
1

forcibly unmounting nfs filesystems

By: Dave Olker, SNSL Advanced Technology Center
Contributor: Randy Saum, Global Solutions Engineering

table of contents introduction 2
problem statement 3
other vendors’ solution 4
hp’s future direction 4
available solutions 5

wait and try umount(1M) again 5
kill any processes accessing the nfs filesystem 5
setup a temporary “surrogate” nfs server 7

preventative steps 11
install the latest fuser(1M), NFS, and virtual memory patches 11
use the “soft” NFS mount option 12
use ServiceGuard to setup a highly available NFS server environment 13

summary 15
for more information 15

august 2003 hp-ux networking

technical
white paper

forcibly unmounting nfs filesystems
introduction

2

introduction Network File System (NFS) is an industry standard file sharing protocol that allows the
filesystems residing on one system (the server) to be seamlessly accessed from other
systems (clients) across a network. When both the client and server systems are
configured properly and performing well, NFS allows client systems to seamlessly access
remote filesystem resources as if they resided on locally mounted disks.

But what about when things are not working well, such as when the NFS server system
stops responding to requests, either because of a network partition being down, a system
panic, or a catastrophic hardware failure? In these situations, NFS filesystems can
appear “hung” on the client systems resulting in application hangs and loss of
productivity. At times like these it may be beneficial to unmount these NFS filesystems
until the server system recovers.

Of course, unmounting NFS filesystems may be less of a concern if your NFS servers
reside in a highly available cluster (i.e. ServiceGuard, TruCluster, etc.) and can recover
from hardware and software faults quickly. However, for those customers who do not
employ this level of server protection, having a mechanism available to forcibly unmount
“hung” NFS filesystems is highly desirable.

The purpose of this white paper is to describe the various tools and methodologies
available to HP-UX systems administrators to combat the situation where NFS filesystems
have become “hung” and need to be unmounted. In addition to covering the procedures
available in currently supported versions of HP-UX, this paper describes the forcible
unmount approach taken by other NFS vendors, as well as the plans to integrate official
support for forcible filesystem unmounting in a future release of HP-UX. Finally, this paper
discusses several preventative steps you can take when configuring your NFS
environment to decrease the likelihood of encountering the problem of NFS filesystem that
cannot be unmounted.

forcibly unmounting nfs filesystems
problem statement

3

problem
statement

 Most attempts at unmounting hung NFS filesystems from an unavailable server fail with
an error such as “Device busy.” This typically occurs when client-side processes are
referencing NFS files or directories on the server at the time it went down or when client-
side processes continuously attempt to access NFS resources on the down server. These
processes must relinquish any references to the directory and its files before the NFS
unmount command will complete successfully.

Other system resources that count towards a filesystem being considered busy are things
like buffer cache memory pages, memory-mapped files, and page cache memory pages.
If these resources are associated with the NFS filesystem in question they will render the
filesystem busy. Therefore, any processes that have used buffer cache, page cache, or
memory-mapped resources associated with the NFS filesystem in question must relinquish
control of these resources before the filesystem can be unmounted.

Unfortunately, in most situations the processes holding NFS resources cannot be simply
killed because they are sleeping at an uninterruptible level in the kernel where they
cannot receive SIGTERM or SIGKILL signals.

Similarly, there are times when an NFS filesystem cannot be unmounted even when the
server is available because the client’s kernel believes the filesystem is “busy” – even
when there are no processes accessing the filesystem. Regardless of the cause, the end
result is the client system is unable to successfully unmount an NFS filesystem.

The most common course of action in these situations is to reboot the client system, thus
killing all running processes and releasing any remaining NFS and Virtual Memory
resources. Of course, this is a drastic solution and one that customers prefer to avoid at
all costs.

Given the disruptive nature and inherent downtime associated with rebooting client
systems, it should come as no surprise that one of the most frequently requested
enhancements submitted by NFS customers is the ability to forcibly unmount “hung” or
“busy” NFS filesystems without incurring any client downtime.

While HP-UX does not currently provide a direct means of forcibly unmounting
filesystems,1 there are methods and procedures available that in some cases will allow
you to successfully unmount “hung” filesystems without requiring a client system reboot.
Likewise, there are precautions you can take to protect your HP-UX client systems from the
situation where NFS filesystems are considered “busy” when no processes are accessing
them.

1 As of HP-UX 11.23 (a.k.a. 11i v2).

forcibly unmounting nfs filesystems
other vendors’ solution & hp’s future direction

4

other vendors’
solution

 Several NFS vendors, including Sun Microsystems, have added support for a new
forcible unmount feature to their operating systems. Sun introduced a new “-f” option to
the umount(1M) command in Solaris 8, which instructs the client to forcibly unmount the
filesystem regardless of whether any processes are accessing the filesystem or not.

This forcible unmount feature has the following characteristics and implications:

• The filesystem being forcibly unmounted simply disappears from the namespace

• Any existing processes using the filesystem are returned an I/O error (EIO)

• The system is prevented from consuming any new resources for the unmounted
filesystem and any resources in use by the filesystem prior to the unmount request
are cleaned up as much as possible

• Any locks held by the NFS client for files residing in the forcibly unmounted
filesystem are released

• When a file I/O operation is attempted on a memory-mapped file in the
unmounted filesystem the application will receive either a segmentation violation
(SIGSEGV) or a bus error (SIGBUS)

• Any data being written to the unmounted filesystem that has not been committed
would be lost

• The processes using this unmounted filesystem may not receive any indication
that the filesystem has been forcibly unmounted

As the above list implies, the use of this option is not without potentially adverse effects to
client-side applications. The potential exists for data loss, and any application using the
filesystem being unmounted faces the possibility of aborting due to a SIGBUS or
SIGSEGV error being returned from a pending I/O operation.

Of course, the same potential for data corruption exists if your only course of action is to
reboot your NFS client systems, and most customers would prefer to avoid rebooting their
systems whenever possible.

hp’s future
direction

 Hewlett-Packard recognizes the potential benefits offered by this forcible unmount feature
and we are considering adding this feature to a future OS release. As of the time of this
writing, the target release for this feature is 11.31 (11i v3), but these plans could change
at any time.

forcibly unmounting nfs filesystems
available solutions

5

available
solutions

 While HP will not offer an officially supported forcible unmount solution for some time,
there are several steps that you can take today to work around this problem. All of the
solutions documented in this section should work on currently supported HP-UX 11.0 or
11i systems.

wait and try
umount(1M) again

 As stated earlier, the primary reason why NFS filesystems are considered “busy” and
cannot be successfully unmounted is because client-side processes hold NFS resources in
the specified filesystem and must relinquish these resources before the filesystem can be
unmounted.

If an initial unmount attempt fails for an NFS filesystem, it is always a good idea to wait
for a brief period of time (typically a few minutes) and try unmounting the filesystem
again. It is always possible that a subsequent unmount command will succeed – if the
processes waiting on the down NFS server either timeout or give up waiting for the server
to recover and release the NFS resources they were holding. Also, during this unmount
interval there is the possibility that buffer cache pages, memory mapped file pages, or
page cache memory pages associated with the NFS filesystem in question could be freed
and invalidated, thus allowing the filesystem to be unmounted successfully.

Of course, if the applications holding the NFS resources are not designed to timeout and
give up you could find yourself waiting forever for something that won’t happen.

kill any processes
accessing the nfs
filesystem

 While certain processes holding NFS resources sleep at an uninterruptible level in the
kernel and cannot receive signals, many times the processes that are keeping an NFS
filesystem busy can be successfully killed, thus allowing the filesystem to be unmounted.
The easiest way to determine which processes are keeping an NFS filesystem busy, and
whether these processes can be successfully killed, is to use the fuser(1M) command.

The fuser(1M) command, when issued against a file, lists the process IDs of any processes
that have the specified file open. When issued against a filesystem, fuser(1M) lists the
process IDs of all processes that currently have open files residing in the specified
filesystem. fuser(1M) can also be used to programmatically send kill signals to these
identified processes.

Figure 1 on page 6 shows an example of using the fuser(1M) command to successfully
identify and kill the processes holding an NFS filesystem busy. The various steps
illustrated in Figure 1 include:

1. Attempt to unmount the NFS filesystem via the umount(1M) command

2. Use the fuser(1M) command to identify the process IDs of those processes that
have files open in the specified filesystem

3. Use the ps(1) command to view the offending processes. The “-p” option
instructs ps(1) to only return information for the specified process IDs.

forcibly unmounting nfs filesystems
available solutions

6

4. Use the fuser(1M) command with the “-k” option to kill the processes holding files
open in the target filesystem. (See important fuser(1M) syntax note below.)

5. Issue the umount(1M) command again to successfully unmount the NFS filesystem
now that all processes holding files open in the filesystem have been killed.

 Figure 1 - fuser(1M) successfully killing processes holding an NFS filesystem busy

 In the above example, fuser(1M) was able to correctly identify and kill the processes that
were holding the NFS filesystem busy, thus allowing the filesystem to be successfully
unmounted while the NFS server was down.

important note on fuser(1M) syntax with NFS filesystems

When using fuser(1M) to query NFS filesystems, always specify the target filesystem
using the format “server:/filesystem” as opposed to specifying client-side path where
the filesystem is mounted. For example, in the case of the following NFS filesystem:

Filesystem Mounted on
hpatcux6:/opt/netscape /nfs_mount

The target filesystem specified on the fuser(1M) command line should be
hpatcux6:/opt/netscape and not /nfs_mount.

fuser(1M) is able to recognize the server:/path syntax as being an NFS filesystem and
it makes no attempt to stat() the remote filesystem, which in the case of a down NFS
server would result in an fuser(1M) hang.

forcibly unmounting nfs filesystems
available solutions

7

setup a temporary
“surrogate” nfs
server

 In the example shown in Figure 1 the fuser(1M) command was able to kill the processes
holding the NFS filesystem busy, and thereby allow the filesystem to be unmounted.
However, in many situations the processes accessing a down NFS filesystem are sleeping
at an uninterruptible level in the kernel and are unable to receive signals, such as SIGKILL
or SIGTERM. In these situations, fuser(1M) will not be able to kill these processes and the
filesystem will remain busy.

Obviously the best solution in this situation is to get the real NFS server back in operation
so that these blocked processes can complete their transactions. Unfortunately, it isn’t
always possible to bring the NFS server back online quickly, or at least not in an
acceptable timeframe for NFS client users.

At times such as this, one possible solution is to setup a temporary “surrogate” NFS
server. In other words, locate a working NFS server system in your environment and
temporarily configure the IP address (or addresses) of the down server to this working
NFS server. By doing this, the NFS client systems will be able to get a response from a
live NFS server system. If an alternate NFS server cannot be located, another possibility
would be to take one of the blocked NFS client systems and enable NFS server-side
services on this system and then add the down NFS server’s IP address to this system.

Figure 2 below and Figure 3 on page 8 illustrate the various steps involved in setting up
a temporary “surrogate” NFS server. Each step in the example is numbered and
described in detail below.

 Figure 2 - Setup a “surrogate” NFS server (part 1)

forcibly unmounting nfs filesystems
available solutions

8

 Figure 3 - Setup a “surrogate” NFS server (part 2)

 The following steps were used in the above example to simulate an NFS filesystem hang
scenario and then to create a “surrogate” NFS server:

1. The bdf(1M) command shows the mounted NFS filesystems.

2. The dd(1) command is used to generate file I/O in the target NFS filesystem. In
this example, the dd(1) command is writing to a file in the NFS filesystem.

3. At this point, the NFS server crashes and the dd(1) command hangs.

4. Because the dd(1) command did not complete and has outstanding I/O requests
requiring a response from the server, the NFS filesystem is considered busy and
cannot be unmounted.

5. The fuser(1M) command is used to identify any processes with files open in the
target filesystem. In this example, fuser(1M) reports that no processes have files
open in the specified NFS filesystem.

forcibly unmounting nfs filesystems
available solutions

9

At first glance this fuser(1M) output doesn’t seem accurate since we know that the
dd(1) command launched in step #2 is referencing a file in the target filesystem.
Why then does fuser(1M) not report the dd(1) process as having open files? The
reason for this apparent discrepancy is that the outstanding NFS write requests
for this file are queued in the client’s buffer cache memory waiting to be written
to the server, so the server’s file is not technically “open” at this point. However,
these buffer cache pages count against the client’s overall usage of the NFS
filesystem, so it is these buffer cache pages that are keeping the filesystem busy.

Even if fuser(1M) had been able to identify the dd(1) process as the one holding
the target NFS filesystem busy, fuser(1M) would not have been able to
successfully kill this process because dd(1) was in the middle of performing file
I/O operations at the time the server crashed and it would therefore be sleeping
at an uninterruptible level in the kernel – unable to receive signals like SIGKILL
and SIGTERM. Even manually sending a “kill -9” to this process would have no
effect, given the state the process was in.

At this point we have a client NFS filesystem that is hung and cannot be
unmounted until it gets a response from the NFS server. Since the original server
is unavailable and presumably cannot be restored in a timely manner, the
alternative solution is to setup a “surrogate” NFS server.

6. The first step in creating a “surrogate” server is to determine the IP address of the
down NFS server. In this example, the nslookup(1) command is used to retrieve
this information.

7. Now a suitable replacement system must be found. The system needs to be
running NFS server daemons (i.e. nfsds). In this example, we will use the NFS
client system, which happens to be running nfsds, as the “surrogate” server.

Before configuring the server’s IP address on this system, we first need to
determine which IP interface to plumb the server’s address to. The netstat(1)
command is used to display the configured IP interfaces on the surrogate system.
Examining this output, it appears this system has three IP interfaces: lan3, lan0,
and lo0. The lan0 interface is connected to the 15.43.208.0 subnet, lan3 is
connected to the 192.1.1.0 network and lo0 is the loopback interface. Since
the down server’s IP address is a member of the 192.1.1.X network, lan3 is the
appropriate interface on this system to plumb this address to.

8. The ifconfig(1M) command is used to add the server’s IP address to the client’s
lan3 interface.

9. Almost immediately the dd(1) command reports an “I/O error” and exits. This is
expected behavior since the temporary NFS server (i.e. the client in our example)
is not exporting the same filesystems as the original server, so the NFS requests
for the original target file will be considered “stale” and will be responded to
with an ESTALE error. This ESTALE error indicates to the client dd(1) process that
the file it was referencing no longer exists on the responding server.

forcibly unmounting nfs filesystems
available solutions

10

Depending upon the design of the application, most processes, upon receiving
an ESTALE error, will give up attempting to contact the NFS server and will either
exit on their own or will transition to a state where they can be successfully killed.
In this example, the dd(1) application returned an error and exited.

10. Even though the dd(1) command has exited, the filesystem cannot be
immediately unmounted. Remember that the client’s buffer cache was holding
memory pages associated with the target NFS filesystem. These pages must be
invalidated from the client’s cache before the filesystem is considered “not busy.”

This is a good example of the principle described on page 5 – if an initial
umount(1M) attempt fails, wait for a period of time and try again. In this
example, the final working umount(1M) command occurred approximately 2
minutes after the dd(1) command exited. Of course, the actual time it takes for
your applications to relinquish their NFS resources will vary.

11. Eventually all buffer cache memory pages associated with the NFS filesystem are
invalidated and the filesystem can be successfully unmounted.

12. Once all NFS clients have successfully unmounted any filesystems associated with
the “down” server, the ifconfig(1M) command should be used to un-plumb the
original server’s IP address. This step is important to remember in order to avoid
an IP address conflict once the original NFS server returns to normal operation.

This procedure is by no means foolproof, nor is it guaranteed to work in every situation.
However, by configuring an available system to masquerade as the down NFS server,
there is a good chance that most NFS client processes will eventually give up waiting for
the original server and relinquish their resources, allowing hung NFS filesystems to be
successfully unmounted until the original server can be made available again.

forcibly unmounting nfs filesystems
preventative steps

11

preventative
steps

 As discussed earlier in this paper, there are many reasons why an NFS filesystem may at
some point transition to a state where it cannot be unmounted; such as when processes
are holding resources open on the filesystem and cannot be killed. There are also times
when it appears no processes are holding any NFS filesystem resources and yet the
filesystem is still considered “busy.” We saw in the example beginning on page 7 how a
process can have active buffer cache memory resources pending against an NFS
filesystem and how this process may not show up in an fuser(1M) process list even though
it continues to hold these buffer cache pages. There have even been customer reported
cases where no processes are keeping NFS files open or holding buffer cache resources
against an NFS filesystem, yet the filesystem is still considered “busy.”

Whatever the cause, the result is the same – an NFS filesystem that cannot be unmounted
when desired. While some of these “busy” NFS filesystem scenarios are unavoidable,
such as server hardware or software failures, there are precautions you can take when
configuring your NFS clients and servers to avoid many of the other common situations
that cause NFS filesystems to be incorrectly considered “busy.” Even in the case of
server hardware or software failures, there are steps you can take to protect your NFS
clients from prolonged server outages.

install the latest
fuser(1M), NFS, and
virtual memory
patches

 Periodically, NFS filesystems may remain in a “busy” state even though no processes that
are accessing this filesystem can be identified by fuser(1M). This situation could be
caused by any number of reasons – processes holding valid buffer cache resources but
do not have files open in the NFS filesystem,2 a defect in the fuser(1M) code that hinders
its ability to report processes correctly, or defects in the NFS or Virtual Memory
subsystems that cause NFS filesystem data structures to become inaccurate, causing the
kernel to incorrectly consider a filesystem “busy” when it is really idle.

HP has released several patches to address these problems on HP-UX 11.0 and 11i
systems. The patches listed below in Table 1 were current as of the time of this writing;
however these patches may have since been superseded. In addition, several of the
patches listed in Table 1 are dependent on other patches for proper operation. Before
installing any of these patches on your HP-UX NFS clients and servers, check with HP
Support to obtain a current list of patches for your specific operating system, or use the
patch tools available at HP’s IT Resource Center Web site: http://itrc.hp.com.

 Table 1 - Recommended Patches to Avoid Known NFS umount(1M) Problems

 Patch Name Supported OS Patch Description

PHCO_21901 11.0 fuser(1M) cumulative

PHNE_28567 11.0 ONC/NFS General Release/Performance

PHNE_28568 11i ONC/NFS General Release/Performance

PHKL_27266 11i iCOD, RTSCHED, (u)mount, final close, NFS umount

2 Refer to the example shown on pages 7 through 10.

http://itrc.hp.com

forcibly unmounting nfs filesystems
preventative steps

12

use the “soft” NFS
mount option

 By default, NFS filesystems are mounted with the “hard” option, which instructs the
client’s kernel to indefinitely retransmit any NFS request that is not responded to by the
NFS server. In other words, if a process on an NFS client attempts to access a file on an
NFS server that is down or otherwise unresponsive, the client will continue to resend NFS
requests to the server until that system (or a different system masquerading as the server)3
responds. This behavior is intentional and designed to guarantee data integrity.

While there are definite benefits to this “hard” mount behavior, there are also drawbacks
– especially in environments where NFS servers are frequently unavailable. In these
environments it may be preferable to allow NFS clients to eventually “give up” when
trying to communicate with a down server and return control to the requesting
applications. This can be done by mounting the NFS filesystems using the “soft” option.

In the previous example on pages 7 through 10, the NFS filesystem was mounted with
the default “hard” option, forcing the client to continually resend NFS requests to the
server until it received a response. If a “surrogate” server had not been configured, or
the original NFS server not been restored to service, any client applications accessing this
filesystem would hang indefinitely.

In Figure 4 below the same exercise is repeated, except in this case the NFS filesystem is
mounted with the “soft” option. When the NFS server crashes (in step 3) the client’s
kernel will attempt to communicate with the server by retransmitting the NFS requests that
have not been responded to. However, the “soft” option instructs the client to eventually
give up and return an I/O error to the dd(1) process. Once all of the processes
accessing this hung NFS filesystem exit the filesystem can be successfully unmounted.

 Figure 4 – Writing to a down NFS server via a “soft” mounted filesystem

3 Refer to the example shown on pages 7 through 10.

forcibly unmounting nfs filesystems
preventative steps

13

important note on the “soft” NFS mount option

Use of the “soft” option on NFS filesystems mounted for read/write access can be
dangerous if your applications are not designed to gracefully handle receiving a
timeout error for operations such as read() or write(). With certain applications,
allowing an NFS write() call to return an I/O error can lead to data corruption if the
client application fails to check the return status of its write() calls and mistakenly
assumes that its data has been successfully written to the server when in fact the write()
call timed out. For this reason, the “hard” mount option (default) is recommended
whenever any write() operation will be performed on the mounted NFS filesystem.

If your NFS environment is one where server systems are frequently unavailable or
non-responsive and you know that all of your client-side applications are designed to
properly handle receiving an I/O error in response to a read() or a write() call, the
“soft” mount option may be a viable means of alleviating some of the frustration and
downtime associated with hung filesystems.

use ServiceGuard to
setup a highly
available NFS server
environment

 One of the reoccurring themes throughout this paper is the idea that applications
accessing an NFS filesystem that is mounted with the “hard” option (default) will hang
indefinitely if the server becomes unavailable during their I/O attempt. In the example
on pages 7 through 10, a procedure was outlined showing how a secondary NFS server
can “masquerade” as the real NFS server. This temporary server receives the
retransmitted NFS requests from the clients and returns an ESTALE error because it is not
managing the same filesystems exported by the original server.

While this ESTALE error does allow the hanging client applications to unblock and
continue (or in some cases exit), a more desirable outcome would be if the secondary
NFS server could somehow export the same filesystems as the original server and thereby
take over responsibility for these NFS filesystems while the original server is unavailable.
If this were to occur, the client applications would operate normally despite the fact that
their NFS filesystems had migrated between servers, and while they may experience a
temporary interruption while the filesystems actually migrated, they would quickly be able
to seamlessly continue their operations with the new server.

This scenario is available today on HP-UX 11.0 and 11i using HP’s MC/ServiceGuard
product and Highly Available NFS Server component.

MC/ServiceGuard allows you to create high availability clusters of HP 9000 servers. A
high availability computer system allows application services to continue in spite of a
hardware or software failure. Highly available systems protect users from software
failures as well as from failure of a system processing unit (SPU), disk, or local area
network (LAN) component. In the event that one component fails, the redundant
component takes over. Application services (individual HP-UX processes) are grouped
together in packages; in the event of a single service, node, network, or other resource
failure, MC/ServiceGuard can automatically transfer control of the package to another
node within the cluster, allowing services to remain available with minimal interruption.

forcibly unmounting nfs filesystems
preventative steps

14

The Highly Available NFS component of MC/ServiceGuard is a toolkit that enables you
to create NFS packages that run on highly available servers. With MC/ServiceGuard
NFS, an NFS server package containing exported filesystems can move from one node
(the primary node) to a different node (the adoptive node) in the cluster in the event of
failure. After MC/ServiceGuard starts the NFS package on the adoptive node, the NFS
filesystems are re-exported to the clients. Any client-side applications accessing these
filesystems will hang temporarily while the NFS server package is started on the adoptive
node. Once the package is running on the adoptive node, the client-side applications
can continue to seamlessly access their files without having to be restarted.

Looking back at the example on pages 7 through 10, remember that one of the critical
steps in setting up a temporary “surrogate” server involved configuring the IP address of
the original NFS server on the temporary node. MC/ServiceGuard NFS performs a
similar function when migrating NFS packages between nodes in the cluster.

Each highly available NFS package is assigned a dedicated IP address, and it is this IP
address that the NFS clients use when mounting the exported filesystems associated with
the package. When a hardware or software failure occurs on the primary node, and this
failure causes MC/ServiceGuard to decide that a package migration is needed, the
exported filesystems and IP address associated with this NFS package move to an
adoptive node in the cluster. Since both the exported filesystems and the server’s IP
address migrate between systems, NFS clients do not require any special configuration to
work in this environment because they simply retransmit their NFS requests to the same IP
address both before and after the package migration. The client systems have no idea
that a different server node in the MC/ServiceGuard cluster is now running the NFS
package and is responding to their requests.

By employing a highly available cluster of NFS servers that can share responsibility for a
pool of exported filesystems, the likelihood of encountering a situation where NFS clients
are blocked due to an unavailable NFS server is drastically reduced.

forcibly unmounting nfs filesystems
summary & for more information

15

summary There are many times when an NFS filesystem will be in a state where it cannot be
unmounted. In some situations these filesystems are considered “busy” for legitimate
reasons – such as when processes are actively accessing the filesystem or when one or
more processes are holding buffer cache memory resources that reference the filesystem.
At other times a filesystem may be erroneously deemed “busy,” where the filesystem
cannot be unmounted even though no processes are accessing or referencing it.

Whatever the cause, when a filesystem cannot be successfully unmounted and the NFS
server system stops responding to requests, either because it has suffered a hardware or
software failure or because it is simply overwhelmed with requests, the result can be client
application hangs or similar interruptions of service, leading to user frustration and loss of
productivity. At times such as these, it may be desirable to find a way to remove these
filesystems from the client until the NFS server’s responsiveness can be restored. While
HP does not currently provide a mechanism to directly force a client to unmount a “busy”
or “hung” NFS filesystem in HP-UX 11.0 or 11i v1/v2, HP is considering providing this
functionality in an upcoming release of HP-UX.

Until such time as a forcible unmount feature is supported by HP-UX, there are many steps
you can take in your current environment to alleviate the negative impact of these “hung”
filesystems. In most cases the fuser(1M) command can be used to identify and kill the
processes that are accessing or referencing the filesystem, thus allowing the filesystem to
be unmounted. When this fails, a temporary “surrogate” NFS server can be configured
to return an error to the clients, which usually causes the client applications to release
their hold on the “hung” filesystem. Sometimes simply waiting for a period of time and
trying the umount(1M) command again may succeed.

In addition, there are preventative measures you can take to avoid experiencing this
“hung” filesystem problem. HP has released software patches that address defects in our
NFS client kernel code and virtual memory subsystem that erroneously caused filesystems
to be deemed “busy” when there were no legitimate users of the filesystem. There are
also patches for the fuser(1M) command that address problems where fuser(1M) was not
correctly identifying all processes accessing a mounted NFS filesystem. The “soft” NFS
mount option can be used (with caution) to allow client applications to eventually give up
trying to contact an unresponsive NFS server. Finally, HP’s MC/ServiceGuard and
Highly Available NFS products can be used to create a cluster of highly available NFS
servers, which can alleviate the problem of unresponsive NFS servers entirely.

for more
information

 To learn more about HP’s MC/ServiceGuard and Highly Available NFS products, contact
your local HP sales representative or visit our Web site at: http://www.hp.com/go/ha.
For information about HP’s NFS product family or the various commands used throughout
this paper, visit HP’s Documentation Repository Web site at: http://docs.hp.com or HP’s
IT Resource Center Web site at: http://itrc.hp.com.

 The information in this document is subject to change without notice.

© Copyright Hewlett-Packard Company 2003

http://www.hp.com/go/ha
http://docs.hp.com
http://itrc.hp.com

