IPv6 Security Threats and Mitigations

Andy Chien (錢小山)
Customer Solutions Architect
Cisco Systems

Nov-22-2012
• Debunking IPv6 Myths
• Shared Security Issues by IPv4 and IPv6
• Specific Security Issues for IPv6
 • IPsec everywhere, dual-stack, tunnels and 6VPE
• Enforcing a Security Policy in IPv6
 • ACL, Firewalls and IPS
• Secure IPv6 Connectivity
 • Secure IPv6 transport over public network
IPv6 Myths
IPv6 Myths: Better, Faster, More Secure

1995: RFC 1883

2012: IPv6

Is IPv6 (a teenager) really ‘better and more secure’?

Eric: a father of two teenagers (16 & 19)…
Reconnaissance in IPv6
Scanning Methods Are Likely to Change

- Default subnets in IPv6 have 2^{64} addresses
 10 Mpps = more than 50,000 years

- Public servers will still need to be DNS reachable
 ⇒ More information collected by Google...

- Increased deployment/reliance on dynamic DNS
 ⇒ More information will be in DNS

- Using peer-to-peer clients gives IPv6 addresses of peers

- Administrators may adopt easy-to-remember addresses (::10, ::20, ::F00D, ::C5C0, :ABBA:ABAB or simply IPv4 last octet for dual stack)

- By compromising hosts in a network, an attacker can learn new addresses to scan
Viruses and Worms in IPv6

- Viruses and email, IM worms: IPv6 brings no change
- Other worms:
 - IPv4: reliance on network scanning
 - IPv6: not so easy (see reconnaissance) => will use alternative techniques

- Worm developers will adapt to IPv6
- IPv4 best practices around worm detection and mitigation remain valid
Scanning Made Bad for CPU Remote Neighbor Cache Exhaustion

• Potential router CPU/memory attacks if aggressive scanning
 Router will do Neighbor Discovery... And waste CPU and memory
Mitigating Remote Neighbor Cache Exhaustion

- **Built-in rate limiter** but no option to tune it

 Since 15.1(3)T: `ipv6 nd cache interface-limit`

 Or IOS-XE 2.6: `ipv6 nd resolution data limit`

 Destination-guard is coming with First Hop Security phase 3

- Using a /64 on **point-to-point links** => a lot of addresses to scan!

 Using /127 could help (RFC 6164)

- **Internet edge/presence**: a target of choice

 Ingress ACL permitting traffic to specific statically configured (virtual) IPv6 addresses only

- Using infrastructure ACL prevents this scanning

 iACL: edge ACL denying packets addressed to your routers

 Easy with IPv6 because new addressing scheme can be done 😊
Reconnaissance in IPv6? Easy with Multicast!

- No need for reconnaissance anymore
- 3 site-local multicast addresses (not enabled by default)
 \[\text{FF05::2 all-routers, FF05::FB mDNSv6, FF05::1:3 all DHCP servers}\]
- Several link-local multicast addresses (enabled by default)
 \[\text{FF02::1 all nodes, FF02::2 all routers, FF02::F all UPnP, …}\]

Source	Destination	Payload
Attacker | FF05::1:3 | DHCP Attack

http://www.iana.org/assignments/ipv6-multicast-addresses/
The IPsec Myth: IPsec End-to-End will Save the World

- IPv6 originally mandated the implementation of IPsec (but not its use)
- Now, RFC 6434 “IPsec SHOULD be supported by all IPv6 nodes”
- Some organizations still believe that IPsec should be used to secure all flows...
 - Interesting scalability issue (n² issue with IPsec)
 - Need to trust endpoints and end-users because the network cannot secure the traffic: no IPS, no ACL, no firewall
 - IOS 12.4(20)T can parse the AH
 - Network telemetry is blinded: NetFlow of little use
 - Network services hindered: what about QoS?

Recommendation: do not use IPsec end to end within an administrative domain.
Suggestion: Reserve IPsec for residential or hostile environment or high profile targets EXACTLY as for IPv4
The No Amplification Attack Myth IPv6 and Broadcasts

- There are no broadcast addresses in IPv6
- Broadcast address functionality is replaced with appropriate link local multicast addresses
 - Link Local All Nodes Multicast—FF02::1
 - Link Local All Routers Multicast—FF02::2
 - Link Local All mDNS Multicast—FF02::FB

Note: anti-spoofing also blocks amplification attacks because a remote attacker cannot masquerade as his victim

http://iana.org/assignments/ipv6-multicast-addresses/
IPv6 and Other Amplification Vectors

- RFC 4443 ICMPv6

 No ping-pong on a physical point-to-point link Section 3.1

 No ICMP error message should be generated in response to a packet with a multicast destination address Section 2.4 (e.3)

 Exceptions for Section 2.4 (e.3)
 - packet too big message
 - the parameter problem message

 ICMP information message (echo reply) should be generated even if destination is multicast

- Rate Limit egress ICMP Packets
- Rate limit ICMP messages generation
- Secure the multicast network (source specific multicast)
- Note: Implement Ingress Filtering of Packets with IPv6 Multicast Source Addresses
Shared Issues

IPv4 Vulnerabilities.

IPv6 Vulnerabilities.
IPv6 Bogon and Anti-Spoofing Filtering

- Anti-spoofing = uRPF
IPv6 Routing Header

- An extension header
- Processed by the listed intermediate routers
- Two types (*):
 - Type 0: similar to IPv4 source routing (multiple intermediate routers)
 - Type 2: used for mobile IPv6

Next Header = 43
Routing Header

IPv6 Basic Header
Routing Header

Routing Header Data

 RH Type
Ext Hdr Length
Next Header
Segments Left

Type 0 Routing Header
Issue: Amplification Attack

• What if attacker sends a packet with RH containing
• Packet will loop multiple time on the link A-B
• An amplification attack!
Preventing Routing Header Attacks

- Apply same policy for IPv6 as for IPv4:
 - Block Routing Header type 0
- Prevent processing at the intermediate nodes
 - `no ipv6 source-route`
 - Windows, Linux, Mac OS: default setting
 - IOS-XR before 4.0: a bug prevented the processing of RH0
 - IOS before 12.4(15)T: by default RH0 were processed
- At the edge
 - With an ACL blocking routing header
- RFC 5095 (Dec 2007) RH0 is deprecated
 - Default changed in IOS 12.4(15)T and IOS-XR 4.0 to ignore and drop RH0
Neighbor Discovery Issue#1
Stateless Autoconfiguration

Router Solicitations are sent by booting nodes to request router advertisements for Stateless Address Auto-Configuring.

Router Solicitation:
- **ICMP Type**: 133
- **IPv6 Source**: A Link Local (FE80::1)
- **IPv6 Destination**: All Routers Multicast (FF02::2)
- **Query**: Please send RA

RA/RS w/o any authentication gives exactly the same level of security as ARP for IPv4 (None).

Attack Tool: `fake_router6`
Can make any IPv6 address the default router.

RA/Router Advertisement:
- **ICMP Type**: 134
- **IPv6 Source**: A Link Local (FE80::2)
- **IPv6 Destination**: All Nodes Multicast (FF02::1)
- **Data**: Options, subnet prefix, lifetime, autoconfig flag
Neighbor Discovery Issue#2
Neighbor Solicitation

No Security Mechanisms Built into Discovery Protocol therefore very similar to ARP

Attack Tool: Parasite6
Answer to all NS, Claiming to Be All Systems in the LAN...

<table>
<thead>
<tr>
<th>Neighbour Solicitation</th>
<th>Neighbour Advertisement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP Type</td>
<td>135</td>
</tr>
<tr>
<td>IPv6 Source</td>
<td>A Unicast</td>
</tr>
<tr>
<td>IPv6 Destination</td>
<td>B Solicited Node Multicast</td>
</tr>
<tr>
<td>Data</td>
<td>FE80:: address of A</td>
</tr>
<tr>
<td>Query</td>
<td>What is B link layer address?</td>
</tr>
<tr>
<td>ICMP Type</td>
<td>136</td>
</tr>
<tr>
<td>IPv6 Source</td>
<td>B Unicast</td>
</tr>
<tr>
<td>IPv6 Destination</td>
<td>A Unicast</td>
</tr>
<tr>
<td>Data</td>
<td>FE80:: address of B</td>
</tr>
</tbody>
</table>
ARP Spoofing is now NDP Spoofing: Mitigation

- **SEMI-BAD NEWS**: nothing yet like dynamic ARP inspection for IPv6
 First phase (Port ACL & RA Guard) available since Summer 2010
 Second phase (NDP & DHCP snooping) starting to be available since Summer 2011

- **GOOD NEWS**: Secure Neighbor Discovery
 SeND = NDP + crypto
 IOS 12.4(24)T
 But not in Windows Vista, 2008 and 7, Mac OS/X, iOS, Android
 Crypto means slower...

- Other **GOOD NEWS**:
 Private VLAN works with IPv6
 Port security works with IPv6
 IEEE 802.1X works with IPv6 (except downloadable ACL)
Secure Neighbor Discovery: Caveats

• Private/public key pair on all devices for CGA

• Overhead introduced
 Routers have to do many public/private key calculation
 (some may be done in advance of use)
 => Potential DoS target
 Routers need to keep more state

• Available:
 Unix (DoCoMo)
 Cisco IOS 12.4(24)T

• Microsoft:
 no support in Vista, Windows 2008 and Windows7
Secure Neighbor Discovery (SeND)
RFC 3971

- Certification paths
 Anchored on trusted parties, expected to certify the authority of the routers on some prefixes

- Cryptographically Generated Addresses (CGA)
 IPv6 addresses whose interface identifiers are cryptographically generated

- RSA signature option
 Protect all messages relating to neighbor and router discovery

- Timestamp and nonce options
 Prevent replay attacks

- Requires IOS 12.4(24)T
Cryptographically Generated Addresses CGA RFC 3972 (Simplified)

- Each device has a RSA key pair (no need for cert)
- Ultra light check for validity
- Prevent spoofing a valid CGA address

<table>
<thead>
<tr>
<th>RSA Keys</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priv</td>
<td>Public Key</td>
</tr>
<tr>
<td>Pub</td>
<td>Subnet Prefix</td>
</tr>
</tbody>
</table>

SHA-1

Signature

SeND Messages

Crypto. Generated Address

Subnet Prefix

Interface Identifier
Securing Neighbor and Router Advertisements with SeND

- Adding a X.509 certificate to RA
- Subject Name contains the list of authorized IPv6 prefixes
Securing Link Operations: on Nodes?

• **Advantages**
 – No central administration, no central operation
 – No bottleneck, no single-point of failure
 – Intrinsic part of the link-operations
 – Efficient for threats coming from the link

• **Disadvantages**
 – Heavy provisioning of end-nodes
 – Poor for threats coming from outside the link
 – Bootstrapping issue
 – Complexity spread all over the domain.
 – Transitioning quite painful
Securing Link Operations: First Hop Trusted Device

• **Advantages**
 – Central administration, central operation
 – Complexity limited to first hop
 – Transitioning lot easier
 – Efficient for threats coming from the link
 – Efficient for threats coming from outside

• **Disadvantages**
 – Applicable only to certain topologies
 – Requires first-hop to learn about end-nodes
 – First-hop is a bottleneck and single-point of failure

Cisco Current Roadmap
IETF SAVI WG
First Hop Security Phase I in 2010: Protecting against Rogue RA

- Port ACL (see later) blocks all ICMPv6 Router Advertisements from hosts

  ```
  interface FastEthernet3/13
  switchport mode access
  ipv6 traffic-filter ACCESS_PORT in
  access-group mode prefer port
  ```

- RA-guard feature in host mode (12.2(33)SXI4 & 12.2(54)SG): also dropping all RA received on this port

  ```
  interface FastEthernet3/13
  switchport mode access
  ipv6 nd raguard
  access-group mode prefer port
  ```
IPv6 Snooping Phase II & III

Phase II
- DHCP Guard
- Source Guard
- Multi Switch operation
- RA Throttler
- NDP Multicast Suppress

Phase III
- Destination Guard
- Prefix Guard
- DAD Proxy
- Binding Table Recovery
- SVI support
RA-Guard

Goal: mitigate against rogue RA

- Switch selectively accepts or rejects RAs based on various criteria's
 - Can be ACL based, learning based or challenge (SeND) based.
 - Hosts see only allowed RAs, and RAs with allowed content
IPv6 First Hop Security Roadmap (November 2011) = not a commitment.

<table>
<thead>
<tr>
<th>Cisco IOS Software Platforms</th>
<th>Cisco 7600 series</th>
<th>Cisco Catalyst 6500 Series Sup 2T</th>
<th>Cisco Catalyst 6500 Series Sup 2T</th>
<th>Cisco Catalyst 4500 Series</th>
<th>Cisco 3750/3560 Series</th>
<th>Cisco 3750/3560 E/X-S series</th>
<th>Cisco 2960S series</th>
<th>Cisco 2960S series</th>
<th>Existing WLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDP Inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>roadmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 Source Guard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>roadmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 prefix Guard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>roadmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA Guard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>roadmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHCPv6 Guard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>roadmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA Throttler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ND Multicast Suppress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IPv6 Port ACL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>12.2(33)SXI4</td>
<td>12.2(54)SG</td>
<td>12.2(46)SE</td>
<td>12.2(46)SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACL based RA Guard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>12.2(33)SXI4</td>
<td>12.2(54)SG</td>
<td>12.2(46)SE</td>
<td>12.2(46)SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 Device Tracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>roadmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 Address Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>roadmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per port Address limit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLS13 H2CY12</td>
<td>12.2(50)SY</td>
<td>roadmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICMPv4 vs. ICMPv6

- Significant changes
- More relied upon

<table>
<thead>
<tr>
<th>ICMP Message Type</th>
<th>ICMPv4</th>
<th>ICMPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity Checks</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Informational/Error Messaging</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fragmentation Needed Notification</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Address Assignment</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Address Resolution</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Router Discovery</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Multicast Group Management</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mobile IPv6 Support</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- ICMP policy on firewalls needs to change to support IPv6
Generic ICMPv4

Border Firewall Policy

<table>
<thead>
<tr>
<th>Action</th>
<th>Src</th>
<th>Dst</th>
<th>ICMPv4 Type</th>
<th>ICMPv4 Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>Echo Reply</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>8</td>
<td>0</td>
<td>Echo Request</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>3</td>
<td>0</td>
<td>Dst. Unreachable—Net Unreachable</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>3</td>
<td>4</td>
<td>Dst. Unreachable—Frag. Needed</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>11</td>
<td>0</td>
<td>Time Exceeded—TTL Exceeded</td>
</tr>
</tbody>
</table>
Equivalent ICMPv6

RFC 4890: Border Firewall Transit Policy

<table>
<thead>
<tr>
<th>Action</th>
<th>Src</th>
<th>Dst</th>
<th>ICMPv6 Type</th>
<th>ICMPv6 Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>128</td>
<td>0</td>
<td>Echo Reply</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>129</td>
<td>0</td>
<td>Echo Request</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>1</td>
<td>0</td>
<td>No Route to Dst.</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>2</td>
<td>0</td>
<td>Packet Too Big</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>3</td>
<td>0</td>
<td>Time Exceeded—TTL Exceeded</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A</td>
<td>4</td>
<td>0</td>
<td>Parameter Problem</td>
</tr>
</tbody>
</table>

Needed for Teredo traffic
Potential Additional ICMPv6

RFC 4890: Border Firewall Receive Policy

![Diagram](image.png)

<table>
<thead>
<tr>
<th>Action</th>
<th>Src</th>
<th>Dst</th>
<th>ICMPv6 Type</th>
<th>ICMPv6 Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>Any</td>
<td>B</td>
<td>2</td>
<td>0</td>
<td>Packet too Big</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>B</td>
<td>4</td>
<td>0</td>
<td>Parameter Problem</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>B</td>
<td>130–132</td>
<td>0</td>
<td>Multicast Listener</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>B</td>
<td>133/134</td>
<td>0</td>
<td>Neighbor Solicitation and Advertisement</td>
</tr>
<tr>
<td>Deny</td>
<td>Any</td>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information Leak with Hop-Limit

- IPv6 hop-limit has identical semantics as IPv4 time-to-live
- Can be leveraged by design
 To ensure packet is local iff hop-limit = 255
 Notably used by Neighbor Discovery
- Can be leveraged by malevolent people
 Guess the remote OS: Mac OS/X always set it to 64
 Evade inspection: hackers send some IPv6 packets analyzed by the IPS but further dropped by the network before reaching destination… Could evade some IPS
 Threat: low and identical to IPv4
Preventing IPv6 Routing Attacks
Protocol Authentication

• BGP, ISIS, EIGRP no change:
 An MD5 authentication of the routing update

• OSPFv3 has changed and pulled MD5 authentication from the protocol and instead is supposed to rely on transport mode IPSec

• RIPng, PIM also rely on IPSec

• IPv6 routing attack best practices
 Use traditional authentication mechanisms on BGP and IS-IS
 Use IPSec to secure protocols such as OSPFv3 and RIPng
OSPF or EIGRP Authentication

interface Ethernet0/0
ipv6 ospf 1 area 0
ipv6 ospf authentication ipsec spi 500 md5 1234567890ABCDEF

interface Ethernet0/0
ipv6 authentication mode eigrp 100 md5
ipv6 authentication key-chain eigrp 100 MYCHAIN

key chain MYCHAIN
key 1
key-string 1234567890ABCDEF
accept-lifetime local 12:00:00 Dec 31 2006 12:00:00 Jan 1 2008
send-lifetime local 00:00:00 Jan 1 2007 23:59:59 Dec 31 2007
IPv6 Attacks with Strong IPv4 Similarities

• Sniffing
 IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4

• Application layer attacks
 The majority of vulnerabilities on the Internet today are at the application layer, something that IPSec will do nothing to prevent

• Rogue devices
 Rogue devices will be as easy to insert into an IPv6 network as in IPv4

• Man-in-the-Middle Attacks (MITM)
 Without strong mutual authentication, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4

• Flooding
 Flooding attacks are identical between IPv4 and IPv6
IPv6 Stack Vulnerabilities

- IPv6 stacks were new and could be buggy
- Some examples

<table>
<thead>
<tr>
<th>CVE</th>
<th>Date</th>
<th>OS</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE-2009-2208</td>
<td>Jun 2009</td>
<td>FreeBSD OpenBSD NetBSD and others</td>
<td>Local users can disable IPv6 without privileges</td>
</tr>
<tr>
<td>CVE-2010-1188</td>
<td>Mar 2010</td>
<td>Linux</td>
<td>DoS for socket() manipulation</td>
</tr>
<tr>
<td>CVE-2010-4684</td>
<td>Jan 2011</td>
<td>IOS</td>
<td>IPv6 TFTP crashes when debugging</td>
</tr>
<tr>
<td>CVE-2008-1576</td>
<td>Jun 2008</td>
<td>Apple Mac OS X</td>
<td>Buffer overflow in Mail over IPv6</td>
</tr>
<tr>
<td>CVE-2010-4669</td>
<td>Jan 2011</td>
<td>Microsoft</td>
<td>Flood of forged RA DoS</td>
</tr>
</tbody>
</table>
Specific IPv6 Issues
IPv6 Privacy Extensions (RFC 3041)

- Temporary addresses for IPv6 host client application, e.g. web browser
 - Inhibit device/user tracking
 - Random 64 bit interface ID, then run Duplicate Address Detection before using it
 - Rate of change based on local policy
- Enabled by default in Windows, Android, iOS

Recommendation: Use Privacy Extensions for External Communication but not for Internal Networks (Troubleshooting and Attack Trace Back)
Disabling Privacy Extension

• Microsoft Windows
 Deploy a Group Policy Object (GPO)

 netsh interface ipv6 set global randomizeidentifiers=disabled
 netsh interface ipv6 set global randomizeidentifiers=disabled store=persistent
 netsh interface ipv6 set privacy state=disabled store=persistent

• Alternatively disabling stateless auto-configuration and force DHCPv6
 Send Router Advertisements with
 all prefixes with A-bit set to 0 (disable SLAAC)
 M-bit set to 1 to force stateful DHCPv6

 interface fastEthernet 0/0
 ipv6 nd prefix default no-autoconfig
 ipv6 dhcp server . . . (or relay)
 ipv6 nd managed-config-flag
IPv6 Header Manipulation

- Unlimited size of header chain (spec-wise) can make filtering difficult
- Potential DoS with poor IPv6 stack implementations

More boundary conditions to exploit
Can I overrun buffers with a lot of extension headers?

Perfectly Valid IPv6 Packet According to the Sniffer

Finding the layer 4 information is not trivial in IPv6
 Skip all known extension header
 Until either known layer 4 header found => SUCCESS
 Or unknown extension header/layer 4 header found... => FAILURE
Fragment Header: IPv6

- In IPv6 fragmentation is done only by the end system
 - Tunnel end-points are end systems => Fragmentation / re-assembly can happen inside the network
- Reassembly done by end system like in IPv4
- RFC 5722: overlapping fragments => MUST drop the packet. Alas, not implemented by popular OS
- Attackers can still fragment in intermediate system on purpose
 - ==> a great obfuscation tool
Parsing the Extension Header Chain Fragmentation Matters!

- Extension headers chain can be so large than it is fragmented!
- RFC 3128 is not applicable to IPv6
- Layer 4 information could be in 2nd fragment

IPv6 hdr	HopByHop	Routing	Fragment1	Destination
IPv6 hdr | HopByHop | Routing | Fragment2 | TCP | Data

Layer 4 header is in 2nd fragment
• RFC 3128 is not applicable to IPv6
• Layer 4 information could be in 2^{nd} fragment
• But, stateless firewalls could not find it if a previous extension header is fragmented

Layer 4 header is in 2^{nd} fragment, Stateless filters have no clue where to find it!
IPv6 Fragmentation & IOS ACL
Fragment Keyword

• This makes matching against the first fragment non-deterministic:
 layer 4 header might not be there but in a later fragment
 ⇒ Need for stateful inspection

• fragment keyword matches
 Non-initial fragments (same as IPv4)
 And the first fragment if the L4 protocol cannot be determined

• undertermined-transport keyword matches
 Only for deny ACE
 first fragment if the L4 protocol cannot be determined
IPv4 to IPv6 Transition Challenges

- 16+ methods, possibly in combination
- Dual stack
 - Consider security for both protocols
 - Cross v4/v6 abuse
 - Resiliency (shared resources)
- Tunnels
 - Bypass firewalls (protocol 41 or UDP)
 - Can cause asymmetric traffic (hence breaking stateful firewalls)
Dual Stack Host Considerations

- Host security on a dual-stack device
 Applications can be subject to attack on both IPv6 and IPv4
 Fate sharing: as secure as the least secure stack...

- Host security controls should block and inspect traffic from both IP versions
 Host intrusion prevention, personal firewalls, VPN clients, etc.

Dual Stack VPN Client

IPv4 IPsecVPN with No Split Tunneling

IPv6 HDR IPv6 Exploit

Does the IPsec Client Stop an Inbound IPv6 Exploit?
Dual Stack with Enabled IPv6 by Default

• Your host:
 IPv4 is protected by your favorite personal firewall...
 IPv6 is enabled by default (Vista, Linux, Mac OS/X, ...)

• Your network:
 Does not run IPv6

• Your assumption:
 I’m safe

• Reality
 You are not safe
 Attacker sends Router Advertisements
 Your host configures silently to IPv6
 You are now under IPv6 attack

• => Probably time to think about IPv6 in your network
$ ifconfig en1
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,MULTICAST>
ethtype ether mtu 1500
ether 00:26:bb:xx:xx:xx
inet6 fe80::226:bbff:fexx:xxxx%en1 prefixlen 64 scopeid 0x6
inet 10.19.19.118 netmask 0xfffffe00 broadcast 10.19.19.255
media: autoselect
status: active

$ ping6 -I en1 ff02::1
PING6(56=40+8+8 bytes) fe80::226:bbff:fexx:xxxx%en1
--- ff02::1%en1 ping6 statistics ---
4 packets transmitted, 4 packets received, +142 duplicates, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.140/316.721/2791.178/412.276 ms

$ ifconfig en1
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,MULTICAST>
ethtype ether mtu 1500
ether 00:26:bb:xx:xx:xx
inet6 fe80::226:bbff:fexx:xxxx%en1 prefixlen 64 scopeid 0x6
inet 10.19.19.118 netmask 0xfffffe00 broadcast 10.19.19.255
media: autoselect
status: active

$ ping6 -I en1 ff02::1
PING6(56=40+8+8 bytes) fe80::226:bbff:fexx:xxxx%en1
--- ff02::1%en1 ping6 statistics ---
4 packets transmitted, 4 packets received, +142 duplicates, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.140/316.721/2791.178/412.276 ms

$ ndp -an
Neighbor 2001::
 ...
$ ndp -an
Neighbor 2001::
 ...
$ ndp -an
Neighbor 2001::
 ...

Humm… Is there an IPv6 Network?

Humm… Are there any IPv6 peers?

Let’s have some fun here… Configure a tunnel, enable forwarding and transmit RA
Enabling IPv6 in the IPv4 Data Center
The Fool’s Way

1) I want IPv6, send RA

2) Sending RA with prefix for auto-configuration

3) Yahoo! IPv6

4) Default protection…

IPv4 protection:
- iptables
- ipfw

IPv6 Protection:
- No ip6tables
- No ip6fw

IPv6 Protection:
- Security center

Internet
Enabling IPv6 in the IPv4 Data Center
The Right Way

1) I want IPv6, send RA

2) Sending RA with “no auto-config”

3) Yahoo!
Static IPv6 address
IPv4 protection: iptables

3) No IPv6
SLAAC
IPv4 protection: ipfw

3) No IPv6
SLAAC
IPv4 Protection: Security center

3) No IPv6
SLAAC
IPv4 Protection: Security center

3) Yahoo!
Static IPv6 address
IPv4 protection: iptables

3) No IPv6
SLAAC
IPv4 protection: ipfw

3) No IPv6
SLAAC
IPv4 Protection: Security center

3) No IPv6
SLAAC
IPv4 Protection: Security center
IPv6 Tunneling Summary

- RFC 1933/2893 configured and automatic tunnels
- RFC 2401 IPSec tunnel
- RFC 2473 IPv6 generic packet tunnel
- RFC 2529 6over4 tunnel
- RFC 3056 6to4 tunnel
- RFC 5214 ISATAP tunnel
- MobileIPv6 (uses RFC2473)
- RFC 4380 Teredo tunnels
- RFC 5569 6RD

- Only allow authorized endpoints to establish tunnels
- Static tunnels are deemed as “more secure,” but less scalable
- Automatic tunneling mechanisms are susceptible to packet forgery and DoS attacks
- These tools have the same risk as IPv4, just new avenues of exploitation
- Automatic IPv6 over IPv4 tunnels could be secured by IPv4 IPSec
L3-L4 Spoofing in IPv6
When Using IPv6 over IPv4 Tunnels

- Most IPv4/IPv6 transition mechanisms have no authentication built in therefore an IPv4 attacker can inject traffic if spoofing both IPv4 and IPv6 addresses.
Looping Attack Between 2 ISATAP routers

1. Spoofed IPv6 packet
 S: 2001:db8::200:5efe:c000:201
 D: 2001:db8:1::200:5efe:c000:202

2. IPv4 ISATAP packet to 192.0.2.2 containing
 S: 2001:db8:2::200:5efe:c000:201
 D: 2001:db8:1::200:5efe:c000:202

3 IPv6 packet
 S: 2001:db8:2::200:5efe:c000:201
 D: 2001:db8:1::200:5efe:c000:202

Repeat until Hop Limit == 0

- Root cause
 ISATAP routers ignore each other

- ISATAP router:
 accepts native IPv6 packets
 forwards it inside its ISATAP tunnel
 Other ISATAP router decaps and forward as native IPv6

Mitigation:
- IPv6 anti-spoofing everywhere
- ACL on ISATAP routers accepting IPv4 from valid clients only
- Within an enterprise, block IPv4 ISATAP traffic between ISATAP routers
- Within an enterprise block IPv6 packets between ISATAP routers

http://www.usenix.org/events/woot09/tech/full_papers/nakibly.pdf
ISATAP/6to4 Tunnels Bypass ACL
Teredo Tunnels (1/3)
Without Teredo: Controls Are in Place

- All outbound traffic inspected: e.g., P2P is blocked
- All inbound traffic blocked by firewall
Teredo Tunnels (2/3)
No More Outbound Control

- Teredo threats—IPv6 over UDP (port 3544)
- Internal users wants to get P2P over IPv6
- Configure the Teredo tunnel (already enabled by default!)
- FW just sees IPv4 UDP traffic (may be on port 53)
Teredo Tunnels (3/3)
No More Inbound Control

- Once Teredo Configured
- **Inbound** connections are allowed
- IPv4 firewall unable to control
- IPv6 hackers can penetrate
- Host security needs IPv6 support **now**

![Diagram illustrating Teredo tunnels and limited inbound control](image-url)
Note: on Windows, Teredo is:
- Disabled when firewall is disabled
- Disabled when PC is part of Active Directory domain
- Else enabled
- User can override this protection
Can We Block Rogue Tunnels?

• Rogue tunnels by naïve users:
 Sure, block IP protocol 41 and UDP/3544
 In Windows:
  ```
  netsh interface 6to4 set state state=disabled undoonstop=disabled
  netsh interface isatap set state state=disabled
  netsh interface teredo set state type=disabled
  ```

• Really rogue tunnels (covert channels)
 No easy way...
 Teredo will run over a different UDP port of course
 Network devices can be your friend (more to come)

• Deploying native IPv6 (including IPv6 firewalls and IPS)
 is probably a better alternative

• Or disable IPv6 on Windows through registry
  ```
  HKLM\SYSTEM\CurrentControlSet\Services\tcpip6\Parameters\DisabledComponents
  ```
 But Microsoft does not test any Windows application with IPv6 disabled
Disabling Teredo Through GPO

- Group Policy Object can be used at Active Directory to disable any transition technologies including Teredo
- Computer Configuration > Policies > Administrative Templates > Network > IPv6 Configuration
- See also
 http://support.microsoft.com/kb/929852 and
6VPE: the MPLS-VPN extension to also transport IPv6 traffic over an MPLS cloud and IPv4 BGP sessions
6VPE Security

- 6PE (dual stack without VPN) is a simple case
- Security is identical to IPv4 MPLS-VPN, see RFC 4381
- Security depends on correct operation and implementation
 - QoS prevent flooding attack from one VPN to another one
 - PE routers must be secured: AAA, iACL, CoPP …
- MPLS backbones can be more secure than “normal” IP backbones
 - Core not accessible from outside
 - Separate control and data planes
- PE security
 - Advantage: Only PE-CE interfaces accessible from outside
 - Makes security easier than in “normal” networks
 - IPv6 advantage: PE-CE interfaces can use link-local for routing
 => completely unreachable from remote (better than IPv4)
Enforcing a Security Policy
PCI DSS Compliance and IPv6

• Payment Card Industry Data Security Standard requires the use of NAT for security
 Yes, weird isn’t it?
 There is no NAT n:1 IPv6 <-> IPv6 in most of the firewalls
 RFC 6296 Network Prefix Translation for IPv6 (NPT6) is stateless 1:1 where inbound traffic is always mapped.
 RFC 6296 is mainly for multi-homing and does not have any security benefit (not that NAT n:1 has any…)

• ➔ PCI DSS compliance cannot be achieved for IPv6 ?
Cisco IOS IPv6 Extended Access Control Lists

- Very much like in IPv4
 - Filter traffic based on
 - Source and destination addresses
 - Next header presence
 - Layer 4 information
 - Implicit deny all at the end of ACL
 - Empty ACL means traffic allowed
 - Reflexive and time based ACL

- Known extension headers (HbH, AH, RH, MH, destination, fragment) are scanned until:
 - Layer 4 header found
 - Unknown extension header is found

- Side note for 7600 & other switches:
 - No VLAN ACL on the roadmap
 - Port ACL on Nexus-7000, Cat 3750 (12.2(46)SE not in base image), Cat 4K (12.2(54)SG), Cat 6K (12.3(33)SXI4)
IOS IPv6 Extended ACL

• Can match on
 Upper layers: TCP, UDP, SCTP port numbers
 TCP flags SYN, ACK, FIN, PUSH, URG, RST
 ICMPv6 code and type
 Traffic class (only six bits/8) = DSCP
 Flow label (0-0xFFFFF)

• IPv6 extension header
 `routing` matches any RH, `routing-type` matches specific RH
 `mobility` matches any MH, `mobility-type` matches specific MH
 `dest-option` matches any, `dest-option-type` matches specific destination options
 `auth` matches AH
 Can skip AH (but not ESP) since IOS 12.4(20)T

• `fragments` keyword matches
 Non-initial fragments (same as IPv4)
 And the first fragment if the L4 protocol cannot be determined

• `undetermined-transport` keyword matches (only for deny)
 Any packet whose L4 protocol cannot be determined: fragmented or unknown extension header
IPv6 ACL Implicit Rules
RFC 4890

• Implicit entries exist at the end of each IPv6 ACL to allow neighbor discovery:

```
permit icmp any any nd-na
permit icmp any any nd-ns
deny ipv6 any any
```

• Nexus 7000 also allows RS & RA
IPv6 ACL Implicit Rules – Cont. Adding a deny-log

• The beginner’s mistake is to add a deny log at the end of IPv6 ACL
  ```
  ! Now log all denied packets
  deny ipv6 any any log
  ! Heu . . . I forget about these implicit lines
  permit icmp any any nd-na
  permit icmp any any nd-ns
  deny ipv6 any any
  ```

• Solution, explicitly add the implicit ACE
  ```
  ! Now log all denied packets
  permit icmp any any nd-na
  permit icmp any any nd-ns
  deny ipv6 any any log
  ```
Example: Rogue RA & DHCP Port ACL

```
ipv6 access-list ACCESS_PORT
  remark for paranoid, block 1st fragment w/o L4 info
  deny ipv6 any any undetermined-transport
  remark Block all traffic DHCP server -> client
  deny udp any eq 547 any eq 546
  remark Block Router Advertisements
  deny icmp any any router-advertisement
  permit ipv6 any any

Interface gigabitethernet 1/0/1
  switchport
  ipv6 traffic-filter ACCESS_PORT in
```

Note: PACL replaces RACL for the interface (or is merged with RACL ‘access-group mode prefer port’)
In August 2010, Nexus-7000, Cat 3750 12.2(46)SE, Cat 4500 12.2(54)SG and Cat 6500 12.2(33)SXI4
Rogue RA & DHCP Port ACL

• Switch Based Port ACL to protect against Rogue RAs & DHCP

 ipv6 access-list ACCESS_PORT
 remark for paranoid, block 1st fragment w/o L4 info
 deny ipv6 any any undetermined-transport
 remark Block all traffic DHCP server -> client
 deny udp any eq 547 any eq 546
 remark Block Router Advertisements
 deny icmp any any router-advertisement
 permit ipv6 any any

 Interface gigabitethernet 1/0/1
 switchport
 ipv6 traffic-filter ACCESS_PORT in

• Cat6k and 4k have a system macro for RA Guard

 interface gigabitethernet 1/0/1
 switchport
 ipv6 nd raguard

• Port ACL replaces Router ACL starting with August 2010 releases onwards

 interface gigabitethernet 1/0/1
 switchport
 access-group mode prefer port
IPv6 ACL to Protect VTY

• Protect VTY access to devices like you would with IPv4

```
ipv6 access-list VTY
  permit ipv6 2001:db8:0:1::/64 any

line vty 0 4
  ipv6 access-class VTY in
```

• Assess if IPv6 access is required in the management plane.
• Some NMS still IPv4 only
• Low priority change for existing networks
Control Plane Policing for IPv6
Protecting the Router CPU

• Against DoS with NDP, Hop-by-Hop, Hop Limit Expiration...

• Software routers (ISR, 7200): works with CoPPr (CEF exceptions)

```
policy-map COPPr
  class ICMP6_CLASS
    police 8000
  class OSPF_CLASS
    police 200000
  class class-default
    police 8000

control-plane cef-exception
service-policy input COPPr
```

• Cat 6K & 7600

 IPv6 shares mls rate-limit with IPv4 for NDP & HL expiration

```
mls rate-limit all ttl-failure 1000
mls rate-limit unicast cef glean 1000
```
ASA Firewall IPv6 Support

• Since version 7.0 (April 2005)
• Dual-stack, IPv6-only, IPv4-only
• Extended IP ACL with stateful inspection
• Application awareness: TTP, FTP, telnet, SMTP, TCP, SSH, UDP
• uRPF and v6 Frag guard
• IPv6 header security checks (length & order)
• Management access via IPv6: Telnet, SSH, HTTPS
• ASDM support (ASA 8.2)
• Routed & transparent mode (ASA 8.2)
• Fail-over support (ASA 8.2.2)
• Selective permit/deny of extension headers (ASA 8.4.2)
• OSPFv3, DHCPv6 relay, stateful NAT64/46/66 (expected mid 2012)
ASA 8.4.2 : IPv6 Header Filtering
Summary of Cisco IPv6 Security Products

- **ASA Firewall**
 - Since version 7.0 (released 2005)
 - Flexibility: Dual stack, IPv6 only, IPv4 only
 - SSL VPN for IPv6 (ASA 8.0)
 - Stateful-Failover (ASA 8.2.2)
 - Cannot configure extension headers in ACL (but parsing is done)

- **FWSM**
 - IPv6 in software... 80 Mbps ... Not an option (put an IPv6-only ASA in parallel)

- **IOS Firewall**
 - IOS 12.3(7)T (released 2005)
 - Zone-based firewall on IOS-XE 3.6 (2012)

- **Cisco Security Agent (EOS)**
 - Since version 6.0.1 for IPv6 network protection

- **IPS**
 - Since 6.2 (released 2008), management over IPv6: Q1 2012

- **Email Security Appliance (ESA)** under beta testing early 2010, shipping Q3 2011

- **Web Security Appliance (WSA)** Q1 2012
IPS Supports IPv6

- Since IPS 6.2 (November 2008)
- Engines
 - Specific to IPv6
 - Common to IPv4 and IPv6
 - TCP reset works over IPv4
- *IPS Manager Express* can view IPv6 events
- *IPS Device Manager* can configure IPv6
- All management plane is over IPv4 only
 - Not critical for most customers
IPv6 Support in IPS Policies

- IPv6 Support in
 Action filter
 Event variable
 Target value rating
Dual-Stack IPS Engines
Service HTTP
Dual-Stack Engine
String TCP with Custom Signature

• Yet another example of an engine supporting both IPv4 and IPv6
IPv6-Only Engines

- Atomic IPv6 (mostly obsolete)
- Atomic IP Advanced
 Routing Header type 0
 Hop-by-Hop
 ...
- Missing
 Rogue RA
 Rogue NA

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700/0</td>
<td>IPv6 Hop-by-Hop Options Present</td>
</tr>
<tr>
<td>1701/0</td>
<td>IPv6 Destination Options Header Present</td>
</tr>
<tr>
<td>1702/0</td>
<td>IPv6 Routing Header Present</td>
</tr>
<tr>
<td>1703/0</td>
<td>IPv6 Fragmented Traffic</td>
</tr>
<tr>
<td>1704/0</td>
<td>IPv6 Authentication Header Present</td>
</tr>
<tr>
<td>1705/0</td>
<td>IPv6 ESP Header Present</td>
</tr>
<tr>
<td>1706/0</td>
<td>Invalid IPv6 Header Traffic Class Field</td>
</tr>
<tr>
<td>1707/0</td>
<td>Invalid IPv6 Header Flow Label Field</td>
</tr>
<tr>
<td>1710/0</td>
<td>IPv6 Extensions Headers Out Of Order</td>
</tr>
<tr>
<td>1711/0</td>
<td>Duplicate IPv6 Extension Headers</td>
</tr>
<tr>
<td>1712/0</td>
<td>IPv6 Packet Contains Duplicate Src And Dst Address</td>
</tr>
<tr>
<td>1713/0</td>
<td>IPv6 Header Contains Multicast Source Address</td>
</tr>
<tr>
<td>1714/0</td>
<td>IPv6 Address Set To localhost</td>
</tr>
<tr>
<td>1716/0</td>
<td>IPv6 Options Padding Too Long</td>
</tr>
<tr>
<td>1717/0</td>
<td>Back To Back Padding Options</td>
</tr>
<tr>
<td>1718/0</td>
<td>IPv6 Option Data Too Short</td>
</tr>
<tr>
<td>1719/0</td>
<td>IPv6 Endpoint Identification Option Set</td>
</tr>
<tr>
<td>1720/0</td>
<td>IPv6 Jumbo Payload Option Set</td>
</tr>
</tbody>
</table>
Summary of Cisco IPv6 Security Products

- ASA Firewall
 - Since version 7.0 (released 2005)
 - Flexibility: Dual stack, IPv6 only, IPv4 only
 - SSL VPN for IPv6 (ASA 8.0)
 - Stateful-Failover (ASA 8.2.2)
 - Extension header filtering and inspection (ASA 8.4.2)

- FWSM
 - IPv6 in software... 80 Mbps ... Not an option (put an IPv6-only ASA in parallel or migrate to ASA-SM)

- ASA-SM
 - Leverage ASA code base, same features ;-) 16 Gbps of IPv6 throughput

- IOS Firewall
 - IOS 12.3(7)T (released 2005)
 - Zone-based firewall on IOS-XE 3.6 (2012)

- IPS
 - Since 6.2 (released 2008)

- Email Security Appliance (ESA) under beta testing early 2010, shipping Q1 2012

- Web Security Appliance (WSA) H2 2012 with explicit proxy

- ScanSafe in two phases Q2 2012 then Q3 2012
Secure IPv6 Connectivity
Secure IPv6 over IPv4/6 Public Internet

- No traffic sniffing
- No traffic injection
- No service theft

<table>
<thead>
<tr>
<th>Public Network</th>
<th>Site to Site</th>
<th>Remote Access</th>
</tr>
</thead>
</table>
| IPv4 | 6in4/GRE Tunnels Protected by IPsec
DMVPN 12.4(20)T | ISATAP Protected by RA IPsec
SSL VPN Client AnyConnect |
| IPv6 | IPsec VTI 12.4(6)T | Q1 2012 |
Secure Site to Site IPv6 Traffic over IPv4 Public Network with DMVPN

- IPv6 packets over DMVPN IPv4 tunnels
 - In IOS release 12.4(20)T (July 2008)
 - In IOS-XE release 3.5 (end 2011)
 IPv6 and/or IPv4 data packets over same GRE tunnel

- Complete set of NHRP commands
 - network-id, holdtime, authentication, map, etc.

- NHRP registers two addresses
 - Link-local for routing protocol (Automatic or Manual)
 - Global for packet forwarding (Mandatory)
DMVPN for IPv6
Phase 1 Configuration

Hub

```plaintext
interface Tunnel0
    !... IPv4 DMVPN configuration may be required...
    ipv6 address 2001:db8:100::1/64
    ipv6 eigrp 1
    no ipv6 split-horizon eigrp 1
    no ipv6 next-hop-self eigrp 1
    ipv6 nhrp map multicast dynamic
    ipv6 nhrp network-id 100006
    ipv6 nhrp holdtime 300
    tunnel source Serial2/0
    tunnel mode gre multipoint
    tunnel protection ipsec profile vpnprof

interface Ethernet0/0
    ipv6 address 2001:db8:1::1/64
    ipv6 eigrp 1

interface Serial2/0
    ip address 172.17.0.1 255.255.255.252
    ipv6 route eigrp 1
    no shutdown
```

Spoke

```plaintext
interface Tunnel0
    !... IPv4 DMVPN configuration may be required...
    ipv6 address 2001:db8:100::11/64
    ipv6 eigrp 1
    ipv6 nhrp map multicast 172.17.0.1
    ipv6 nhrp map 2001:db8:100::1/128 172.17.0.1
    ipv6 nhrp network-id 100006
    ipv6 nhrp holdtime 300
    ipv6 nhrp nhs 2001:db8:100::1
    tunnel source Serial1/0
    tunnel mode gre multipoint
    tunnel protection ipsec profile vpnprof

interface Ethernet0/0
    ipv6 address 2001:db8:1::1/64
    ipv6 eigrp 1

interface Serial1/0
    ip address 172.16.1.1 255.255.255.252
    ipv6 route eigrp 1
    no shutdown
```
Secure Site to Site IPv6 Traffic over IPv6 Public Network

- Since 12.4(6)T, IPsec also works for IPv6
- Using the Virtual Interface

```
interface Tunnel0
  no ip address
  ipv6 address 2001:DB8::2811/64
  ipv6 enable
  tunnel source Serial0/0/1
  tunnel destination 2001:DB8:7::2
  tunnel mode ipsec ipv6
  tunnel protection ipsec profile ipv6
```
IPv6 for Remote Devices Solutions

• Enabling IPv6 traffic inside the Cisco VPN Client tunnel
 NAT and Firewall traversal support
 Allow remote host to establish a v6-in-v4 tunnel either automatically or manually
 ISATAP—Intra Site Automatic Tunnel Addressing Protocol
 Fixed IPv6 address enables server’s side of any application to be configured on an IPv6 host that could roam over the world

• Use of ASA 8.0 and SSL VPN Client AnyConnect 3.0 (Windows, Android, iPhone)
 Can transfer IPv4+IPv6 traffic over public IPv4
 DNS is still IPv4-only, no split tunneling only
 Mid-2012 with ASA 8.6 and AC 3.1, IPv4+IPv6 traffic over public IPv6 and over IPsec or SSL (roadmap, date can change)
Secure RA IPv6 Traffic over IPv4 Public Network: ISATAP in IPsec

IPsec protects IPv4 unicast traffic... The encapsulated IPv6 packets

IPv6 PC

IPv6 Network

IPsec

IPv4

Enterprise VPN head-end (ASA, IOS, ...)

ISATAP Tunnel server on dual stack router

IPsec with NAT-T can traverse NAT
ISATAP encapsulates IPv6 into IPv4
Secure RA IPv6 Traffic over IPv4 Public Network: AnyConnect SSL VPN Client
ASA 8.0 and AnyConnect 2.0 for IPv6 transport

- Since 8.0 ASA SSL VPN and AnyConnect can transport IPv6

```text
same-security-traffic permit inter-interface
same-security-traffic permit intra-interface

ipv6 local pool POOL_V6 2001:db8:5fff:81::1:1/64 8

tunnel-group DefaultWEBVPNGroup general-attributes
...
ipv6-address-pool POOL_V6
```

Ethernet adapter Cisco AnyConnect VPN Client Connection:

```
Connection-specific DNS Suffix : cisco.com
IP Address.................... : 192.168.0.200
Subnet Mask................... : 255.255.255.0
IP Address.................... : 2001:db8:5fff:81::1:1
IP Address.................... : fe80::205:9aff:fe3c:7a00%13
Default Gateway............... : 192.168.0.1
                              : 2001:db8:5fff:81::
ASA with IPv6

name 2001:db8:cafe:1003:: BR1-LAN description VLAN on EtherSwitch
name 2001:db8:cafe:1004:9db8:3df1:814c:d3bc Br1-v6-Server
!
interface GigabitEthernet0/0
description TO WAN
nameif outside
security-level 0
ip address 10.124.1.4 255.255.255.0 standby 10.124.1.5
ipv6 address 2001:db8:cafe:1000::4/64 standby 2001:db8:cafe:1000::5
!
interface GigabitEthernet0/1
description TO BRANCH LAN
nameif inside
security-level 100
ip address 10.124.3.1 255.255.255.0 standby 10.124.3.2
ipv6 address 2001:db8:cafe:1002::1/64 standby 2001:db8:cafe:1002::2
!
ipv6 route inside BR1-LAN/64 2001:db8:cafe:1002::3
ipv6 route outside ::/0 fe80::5:73ff:fea0:2
!
ipv6 access-list v6-ALLOW permit icmp6 any any
ipv6 access-list v6-ALLOW permit tcp 2001:db8:cafe::/48 host Br1-v6-Server object-group RDP
!
failover
failover lan unit primary
failover lan interface FO GigabitEthernet0/2
failover link FO-LINK GigabitEthernet0/3
failover interface ip FO 2001:db8:cafe:bad::1/64 standby 2001:db8:cafe:bad::2
failover interface ip FO-LINK 2001:db8:cafe:bad1::1/64 standby 2001:db8:cafe:bad1::2
!
access-group v6-ALLOW in interface outside
AnyConnect 2.x—SSL VPN

```
asa-edge-1#show vpn-sessiondb svc
Session Type: SVC
Username : ciscoese Index : 14
Assigned IP : 10.123.2.200 Public IP : 10.124.2.18
Protocol : Clientless SSL-Tunnel DTLS-Tunnel
License : SSL VPN
Encryption : RC4 AES128 Hashing : SHA1
Bytes Tx : 79763 Bytes Rx : 176080
Group Policy : AnyGrpPolicy Tunnel Group: ANYCONNECT
Login Time : 14:09:25 MST Mon Dec 17 2007
Duration : 0h:47m:48s
NAC Result : Unknown
VLAN Mapping : N/A VLAN : none
```

Dual-Stack Host
AnyConnect Client

Cisco ASA
Summary
Key Take Away

• So, nothing really new in IPv6
  - Reconnaissance: address enumeration replaced by DNS enumeration
  - Spoofing & bogons: uRPF is our IP-agnostic friend
  - NDP spoofing: RA guard and more feature coming
  - ICMPv6 firewalls need to change policy to allow NDP
  - Extension headers: firewall & ACL can process them
  - Amplification attacks by multicast mostly impossible
  - Potential loops between tunnel endpoints: ACL must be used

• Lack of operation experience may hinder security for a while: **training is required**

• Security enforcement is possible
  - Control your IPv6 traffic as you do for IPv4

• Leverage IPsec to secure IPv6 when suitable
Is IPv6 in My Network?

• Easy to check!

• Look inside NetFlow records
  Protocol 41: IPv6 over IPv4 or 6to4 tunnels
  IPv4 address: 192.88.99.1 (6to4 anycast server)
  UDP 3544, the public part of Teredo, yet another tunnel

• Look into DNS server log for resolution of ISATAP

• Beware of the IPv6 latent threat: your IPv4-only network may be vulnerable to IPv6 attacks NOW
Q&A
Recommended Reading

- IPv6 Security
  Information assurance for the next-generation Internet Protocol
  Scott Hogg, OCE® No. 5139
  E16 Yvonne

- IPv6 for Enterprise Networks
  Shannon McFaul
  Murindor Samb
  Vishal Sharma
  Sanjay Hooda

- Cisco Firewalls
  Concepts, design and deployment for Cisco Stateful Firewall solutions
  Alexandre M.S.P. Morais, CCE® No. 5993

Source: Cisco Press
Thank you.