—

Hewlett Packard
Enterprise

June 6, 2016

PostgreSQL 9.6 New Features
With Examples

Hewlett-Packard Enterprise Japan, Ltd.
Noriyoshi Shinoda

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Index
LT S O O PSPPI PP PP OPPPPUPPPPRN 2
1. About This DOCUMENLcoouumiiiiiiiiiiiiiiiiiiee ettt ettt errre e e e e e 4
Lo PUIPOSE s 4
L2 AUAIEIICE ..ttt ettt ettt e ettt e sttt e s sttt e e sttt e s te e e s snr e e e nabeeee s 4
L3 S0P - 4
1.4 SOTEWATE VEISION.eeiiiiiiiiiiiiiiiiieit ittt ettt et e e s e s err e et e e e e e s s sanraeeees 4
1.5 Question, Comment, and ReSPONSIDILILYuuuuuuuueii e 4
L] 15 o) s OO PP U PP PP P PPPT P OPPPP 5
2. NEeW FEature OVEIVIEW ...ccovvueriiiiiiiiiiiiiiiiieeeee e ettt e e e ettt e e e e s s srbree e e e e e s ssssnraaeeeeeeenns 6
2.1 IMPTOVE PETfOTMANCE ... s 6
2.2 Added FEAUIESevveiiiiiiiiiiiiiiiee ettt ettt et e e e e s et et e e e e s arree e 6
2.3 SQL IMPTOVEIMIENES ...t 7
3. New Feature DEetailscoooviiiiiiiiiiiiiiiiiiee et 8
3.1 ATCRITECTUTE .ottt e ettt e e e e e sttt e e e e s snnrrneeees 8
3.1.1 Added SyStem Catalogs.uuuuueeee s 8
3.1.2 MOAIfIEA CALALOZS ... s 11
3.1.3 Modified Contrib mMOdUIES.......cccceerriiimiiiiiiiiiiiiiieee ettt 13
3.1.4 Avoid Full-Table VaCUUIMccciiiiiiiiiiiiiiiieee ettt e e 17
3.1.5 Improve CHECKPOINTuuiiii s 17
B2 UHIEIES teveeeeeeiiiiiiiiieeeee ettt ettt e e e ettt e e e sttt e e e e s sannbreeeeeeeesssnnnrrneeees 18
T8 - | 18
3.2.2 PE DASEDACKUP ... s 20
3.2.3 PO TEWINA .. 22
3.2.4 P AUMP / PG TESTOTE .. s 22
325 PEDCIICK .. s 22
3.3 Changes Of PATAMELETSuuuuuuuuuuiieeiii s 23
3.3.1 Added ParameterS.....cceeerrumrrreerieeeeiiiiiiteeeeeeeeriiiteeeee e e s ssirrreee e e e e e s ennrreeeeeeeessannnee 23
3.3.2 Changed ParameELeTsu.uuuuuuuueeei s 25
3.3.3 Parameters changed the default valueccooiiiiiiiiiiiii s 26
3.4 Enhancement for SQL StateMENTuuuuuueeeeiiiiiiiiiiieeeeeeeeeriiieeeeeeeeeereiieeeeeeeeessarnnneeeaaanns 28
3.4.1 Enhancement of the COPY Statement.......cceeeeerriemrieeieeeeeriiiiiieeeeeeeeeeiiiieeeeeeee e s 28
3.4.2 Enhancement of the ALTER TABLE ADD COLUMN statement..........ccccceeeeeeeenennnnnnn 28
3.4.3 Enhancement of the ALTER TABLESPACE SET statement.........cccccceeeeveiiniinniinannnnnnn. 29
3.4.4 Enhancement of the CREATE EXTENSION statementcc.vvveeeeeeeernicmmieeeeeeeeennnnnne 29

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

3.4.5 Enhancement of the ALTER OPERATOR statement...........cccuvveeeeeeeenniiiniieeeeeeeennnnnne 30
3.4.6 Added function fOr JSOND tYPE....uuuuuuuuiiii s 30
3.4.7 Additional FUNCHONSeeiueeiiiieieeeee ittt ettt e e ettt e e e e s eibreee e e e e e e saaanee 31

3.5 Paralle] SEQ SCANuuueeiiii s 38
3.5 T OVRIVIEW .eeiiiiiieteeeeeeeeiiittte et e e e e sttt et eeeessaaabbteeeeeeessaaabbbaeeeeeeesaannsrbeaeeeeeeesannnnes 38
3.5.2 EXCCULION PIAN. ...ttt s 39
3.5.3 Parallel processing and fUNCHONSuuueuuuuuueiieee s 41
3.5.4 Calculation of the degree of paralleliSm......... ... 43

3.6 MONILOTING WATE SEALS. .. .uuuiiiiiiii s 45
3.7 Enhancement of FOREIGN DATA WRAPPERccoiiiiiiiiiiiiieeeeeeeee e 46
3.7.1 SOTt PUSH-AOWN ...eeiiiieeiiiiiiieeee ettt ettt e e e e e et e e e e e e e s 46
3.7.2 DATECE MOAITY ...t an 46
3.7.3 JOIN PUSH-AOWN ...eeiiiieiiiiiiiiicee ettt et e e e et e e e e e s 47

3.8 Multiple synchronous Standby SEIVETSuuuuuuuuuuummuummunnnuiinnnnnnnnnnnnnnnnnnnnnnnnnnnns 49
3.0 SECUITEY .t nnn 50
3.9.1 Default ROIE......uuiiiiiieieiiiiiiiieeee ettt ettt ettt e e e e e e e e e e e s 50
3.0.2 INAMESPACE. .. uuuuuuuuunnnnnnnuiaenneaaaeeaaaeaeaaanaaenannnssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnn 50

23 10) F0Te4 21 o) 1 USSR PR 51
MOAIfICAION HISTOTY coeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee aaa s 52

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

1. About This Document

1.1 Purpose
The purpose of this document is to provide information of the major new features of PostgreSQL 9.6,

the Beta 1 version being published.

1.2 Audience

This document is written for engineers who already have knowledge of PostgreSQL, such as

installation, basic management, and so forth.

1.3 Scope
This document describes the major difference between PostgreSQL 9.5 and PostgreSQL 9.6 Beta 1.

It does not mean that all of the new features is examined.

1.4 Software Version

This document is intended for the following versions of the software as a general rule:

Table 1 Version

Software Version
PostgreSQL PostgreSQL 9.5.3 (for comparison)
PostgreSQL 9.6 Beta 1 (May 9, 2016, 9:04 p.m.)

Operating System Red Hat Enterprise Linux 7 Update 1 (x86-64)

1.5 Question, Comment, and Responsibility

The contents of this document is not an official opinion of the Hewlett-Packard Enterprise
Corporation. The author and affiliation company do not take any responsibility about the problem
caused by the mistake of contents. If you have any comments for this document, please contact to

Noriyoshi Shinoda (noriyoshi.shinoda@hpe.com) Hewlett-Packard Enterprise Japan Co, Ltd.

© 2016 Hewlett-Packard Enterprise. -

mailto:noriyoshi.shinoda@hpe.com

—

Hewlett Packard
Enterprise

1.6 Notation

This document contains examples of the execution of the command or SQL statement. Execution

examples are described according to the following rules:

Table 2 Examples notation

Notation Description

Shell prompt for Linux root user

$ Shell prompt for Linux general user
bold User input string

postgres=# psql command prompt for PostgreSQL administrator
postgres=> psql command prompt for PostgreSQL general user

underline Important output items

The syntax is described in the following rules:

Table 3 Syntax rule

Notation Description

Italic Replaced by the name of the object which users use, or the other syntax
[ABC] Indicate that it can be omitted

{A|B} Indicate that it is possible to select A or B

General syntax, it is the same as the previous version

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

2. New Feature Overview

PostgreSQL 9.6 has many new features and improvements.

2.1 Improve Performance

Performance has been improved in the following part:

® Use quicksort to external sort

® [Estimate accuracy improvement of the GROUP BY clause
® Use a foreign key to the predicted join
® Writing performance improvement such as checkpoint and bgwriter
® The execution of the Index Only Scan with partial indexes
® Speed up CREATE INDEX CONCURRENTLY statement
® And so force

2.2 Added Features

The major additional features are listed below. The number in parentheses is the number of the
chapter in this document for details.
® Parallel Seq Scan (3.5)
Monitoring Wait Stats (3.6)
Enhancement of FOREIGN DATA WRAPPER object (3.7)
Synchronous replication with multiple synchronous standby servers (3.8)
Avoid Full-Table Vacuum (3.1.4)
Snapshot Too Old implementation by configurable timeout (3.3.1)
Improvement of various Contrib module (3.1.3)
Improvement of various utilities (3.2)
Catalog for Activity of WAL receiver (3.1.1)
Generic WAL Records

Non-exclusive base online backup (3.4.7)

And so force

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

2.3 SOL Improvements

The following SQL statements are newly supported. The number in parentheses is the number of the
chapter in this document for details.
® COPY enhancement (3.4.1)
ALTER TABLE ADD COLUMN enhancement (3.4.2)
ALTER TABLESPACE SET enhancement (3.4.3)
CREATE EXTENSION enhancement (3.4.4)
ALTER OPERATOR enhancement (3.4.5)
CREATE / ALTER FUNCTION PARALLEL SAFE / UNSAFE (3.5)
CREATE ACCESS METHOD statement added
CREATE TABLE ... LIKE enhancement
Added functions (3.4.6 / 3.4.7)

And so force

Other new features are described in the PostgreSQL 9.6 Beta Documentation Appendix E. Release
Notes (http://www.postgresql.org/docs/9.6/static/release-9-6.html).

© 2016 Hewlett-Packard Enterprise. -

http://www.postgresql.org/docs/9.6/static/release-9-6.html

—

Hewlett Packard
Enterprise

3. New Feature Details

3.1 Architecture

3.1.1 Added System Catalogs

Along with the addition of new features, the following system catalogs have been added.

Table 4 Added system Catalogs

Catalog Name Description
pg_config PostgreSQL binary’s install information
pg_stat wal receiver Activity of wal receiver process

pg_stat progress vacuum Activity of vacuum process progress

pg_init privs Initial privilege settings for object

o pg_config Catalog
This catalog exposes the information of various macros that are specified at compile time of
PostgreSQL binary. Previously, pg_config command provides the information. Entity of this catalog

is pg_config function. This catalog is only readable by a superuser.

Table 5 pg_config Catalog

Column Name Data Type Description

name text Macro name

setting text Setting value

Example 1 Query for pg_config Catalog

postgres=# SELECT * FROM pg_config ;
name | setting
___________________ o m o o e e
BINDIR | /usr/local/pgsql/bin
DOCDIR | /usr/local/pgsql/share/doc
HTMLDIR | /usr/local/pgsql/share/doc
INCLUDEDIR | /usr/local/pgsql/include
PKGINCLUDEDIR | /usr/local/pgsql/include

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

O pg_stat wal receiver Catalog
This catalog provides information about the state of a slave instance's WAL receiver process in

replication environment. This catalog is readable by the general user.

Table 6 pg_stat_wal_receiver Catalog

Column Name Data Type Description

pid integer Process ID of wal receiver

status text Activity Status

receive start Isn pg_lsn First transaction log position

receive start tli integer First timeline number

received Isn pg_lsn Last transaction log position already

received and flushed to disk

received_tli integer Timeline number of last transaction log
position received and flushed to disk

last msg_send time timestamp with time zone Send time of last message received

last msg receipt time timestamp with time zone Receipt time of last message received

latest end lsn pg_lsn Last transaction log position reported

latest end_time timestamp with time zone Time of last transaction log position
reported

slot name text Replication slot name

This catalog is made up by the result of pg_stat get wal receiver function.

Example 2 Query for pg_stat _wal receiver Catalog

postgres=# SELECT * FROM pg_stat_wal_receiver ;

2016-05-15 11:49:09.753784+09
2016-05-15 11:49:09.753879+09
0/360000D0

last msg send time

last msg receipt time

-[RECORD 1]--------- e
pid | 2782
status | streaming
receive start_lsn | ©/36000000
receive_start_tli | 1
received_lsn | ©/36000000
received_tli | 1
|
|
|

latest_end_1sn

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

O pg_stat progress vacuum Catalog
This catalog provides information about the state of the progress of vacuum processing. This catalog

is readable by the general superuser.

Table 7 pg_stat_progress_vacuum Catalog

Column Name Data Type Description

pid integer Process ID of backend

datid oid OID of database

datname name Connected database name

relid oid OID of the table being vacuumed

phase text Current processing phase of vacuum

heap blks_total bigint Total number of heap blocks in the table

heap blks scanned bigint Number of heap blocks scanned

heap blks vacuumed bigint Number of heap blocks vacuumed

index vacuum count bigint Number of completed index vacuum cycles

max_dead tuples bigint Number of dead tuples that we can store before needing to
perform an index vacuum cycle

num_dead tuples bigint Number of dead tuples collected since the last index

vacuum cycle

Example 3 Query for pg_stat_progress_vacuum Catalog

postgres=# SELECT * FROM pg_stat_progress_vacuum ;

-[RECORD 1]------ 4o m e meme
pid | 3184

datid | 16385

datname | demodb

relid | 16398

phase | scanning heap
heap_blks_total | 10052
heap_blks_scanned | 2670
heap_blks_vacuumed | 2669
index_vacuum_count | ©
max_dead_tuples | 291
num_dead_tuples | 185

© 2016 Hewlett-Packard Enterprise.

—

Hewlett Packard
Enterprise

O pg_init_privs Catalog
The pg_init_privs catalog stores the information about the initial privileges of objects which have

non-default value in the database. This catalog is readable by the general superuser.

Table 8 pg_init_privs Catalog

Column Name Data Type Description

objoid oid The OID of the specific object

classoid oid The OID of the system catalog the object is in
objsubid integer For a table column, this is the column number
privtype char The type of initial privilege of this object
nitprivs aclitem[] The initial access privileges

3.1.2 Modified Catalogs

The following system catalogs have been changed.

Table 9 Modified catalogs

Catalog Name Changed

pg_replication slots Add confirmed flush Isn column
pg_stat activity Remove waiting column

Add wait_event type column and wait_event column

pg_proc Add proparallel column
pg_aggregate Stores information about aggregate functions
pg_am Stores information about index access methods

O pg_replication_slots Catalog

The confirmed_flush_Isn column has been added.

Table 10 Added column to pg_replication_slots Catalog

Column Name Data Type Description

confirmed flush Isn pg lIsn Receiving LSN information of the logical slot

O pg_stat activity Catalog
The "waiting" column that shows only the waiting state is replaced with the wait_event column and

the wait_event type column that show the wait events.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Table 11 Added columns to pg_stat_activity Catalog

Column Name Data Type Description
wait_event_type text The type of event for which the backend is waiting
wait_event text Wait event name if backend is currently waiting

Please refer to the following URL information about wait events.

https://www.postgresql.org/docs/9.6/static/monitoring-stats.html

o pg_proc Catalog
Proparallel column that shows whether procedure is PARALLEL SAFE or PARALLEL UNSAFE
has been added.

Table 12 Added column to pg_proc Catalog

Column Name Data Type Description

proparallel char Parallel Safe = 's' function, Restricted Parallel Safe function = 'r'

(Only leader can execute), Parallel Unsafe function = 'u'

O pg_aggregate Catalog

The following column has been added.

Table 13 Added columns to pg_aggregate Catalog

Column Name Data Type Description

aggcombinefn regproc Combine function (zero if none)

aggserialfn regproc Serialization function (zero if none)

aggdeserialfn regproc Deserialization function (zero if none)

aggserialtype oid Return data type of the aggregate function's serialization
function

o pg_am Catalog

pg_am catalog change completely, became simple.

Table 14 Columns of pg_am Catalog

Column Name Data Type Description

amname name Access method name
amhandler oid OID of handler function
amtype char Type of access method

© 2016 Hewlett-Packard Enterprise. -

https://www.postgresql.org/docs/9.6/static/monitoring-stats.html

—

Hewlett Packard
Enterprise

At the time of writing (June 6, 2016), there is no description about amtype column on the manual

(http://www.postgresql.org/docs/9.6/static/catalog-pg-am.html).

3.1.3 Modified Contrib modules

In PostgreSQL 9.6, some Contrib modules have been changed.

Table 15 Changed in Contrib modules
Module Changed Note

auto_explain Add parameter Sample rate parameter has been added
postgres_fdw Add options Fetch_size option has been added
Extensions option has been added

pg_visibility Add module Provide Visibility Map information

bloom Add module Index that uses a Bloom filter

sslinfo Add function Add ssl_extension_info function

tsearch2 Enhancement Add operators for phrase search

pg_trgm Enhancement Add support for "word similarity". Add configuration

parameter pg_trgm.similarity threshold

pgcrypto Add function Add an optional S2K iteration count parameter
pgpageinspect Add output Output data added to the heap page items function
hstore Add function Add functions for json type

0 Enhancement of auto_explain module

Parameter auto_explain.sample ratio has been added to the auto_explain module. This parameter
specifies the percentage of SQL statements to log the execution plan. For example, the execution plan
to log by auto_explain.log_min_duration parameter will be reduced to the percentage specified by this

parameter. The default value is 1 (= 100%).

o Enhancement of postgres fdw module

The fetch size to get tuples by SELECT statement can be specified now. This option can be specified
for each SERVER or FOREIGN TABLE. The fetch size in the previous postgres fdw module was
fixed to 100.

© 2016 Hewlett-Packard Enterprise. -

http://www.postgresql.org/docs/9.6/static/catalog-pg-am.html

—

Hewlett Packard
Enterprise

Example 4 fetch_size option

postgres=# CREATE SERVER remsvrl FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'remhostl', port '5432', dbname 'demodb', fetch size '300') ;

CREATE SERVER
postgres=# CREATE FOREIGN TABLE tablel(cl NUMERIC, c2 VARCHAR(19))
SERVER remsvr OPTIONS(fetch size '300') ;

CREATE FOREIGN TABLE

The following example shows the actually executed SQL statement at the remote instance when

"SELECT * FROM tablel" statement were executed.

Example S Executed SQL statement (from log file)

LOG: duration: 0.072 ms statement: START TRANSACTION ISOLATION LEVEL

REPEATABLE READ

LOG: duration: 156.616 ms parse <unnamed>: DECLARE cl CURSOR FOR
SELECT c1, c2 FROM public.tablel

LOG: duration: ©.102 ms bind <unnamed>: DECLARE c1 CURSOR FOR
SELECT c1, c2 FROM public.tablel

LOG: duration: 0.039 ms execute <unnamed>: DECLARE cl CURSOR FOR
SELECT c1, c2 FROM public.tablel

LOG: duration: 0.272 ms statement: FETCH 300 FROM cl

LOG: duration: 0.202 ms statement: FETCH 300 FROM cl

LOG: duration: ©0.028 ms statement: CLOSE cl

LOG: duration: 0.038 ms statement: COMMIT TRANSACTION

EXTENSIONS option for the remote instance can be specified now.

Example 6 Specify extensions option

postgres=# CREATE SERVER remsvrl FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'remsvrl', port '5433', dbname 'postgres’,
extensions 'hstore') ;

CREATE SERVER

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

0 Add pg visibility module
Pg_visibility modules that can get the information of the Visibility Map has been added. The

following functions are provided. The execution requires superuser privileges.

Table 16 Functions in the pg_visibility module

Function name Description
pg_visibility View the status of each block of the specified table
pg_visibility_map View the status of each block of the specified table

pg_visibility map summary Display the status of the specified table

In the following example, the number of VISIBLE blocks and FREEZEed blocks is gotten by the

pg_visibility map summary function .

Example 7 pg_visibility module

postgres=# CREATE EXTENSION pg visibility ;

CREATE EXTENSION

postgres=# SELECT pg_visibility_map_summary('datal') ;
pg_visibility map_summary
(5406 ,5406)

(1 row)

o Add bloom module

Bloom module has been added to the Contrib modules. Indexes that use the Bloom Filter can be
created by loading the bloom module. Using this module, it is possible to create an index for a large
number of column at the same time that uses only a relatively small capacity of the storage. By simple
verification, if the BTree index is created on the column described in the WHERE clause, the BTree
index is used.

To use the bloom module, it is necessary to specify the USING bloom clause in the CREATE INDEX

statement. There are "size", "coll", "col2", ... options, but use of them has not yet been verified.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 8 Creating a bloom module and the execution plan

postgres=# CREATE EXTENSION bloom ;
CREATE EXTENSION
postgres=> CREATE TABLE blooml1(cl INTEGER, c2 INTEGER, c3 INTEGER,
c4 INTEGER, c5 INTEGER);
CREATE TABLE
postgres=> CREATE INDEX bll_blooml ON blooml USING bloom
(c1, c2, c3, c4, c5) ;
CREATE INDEX
postgres=> EXPLAIN ANALYZE SELECT * FROM blooml WHERE cl = 10000
AND c5 = 10000 ;
QUERY PLAN
Bitmap Heap Scan on blooml (cost=17848.00..17852.02 rows=1 width=20)
(actual time=8
.376..8.538 rows=1 loops=1)
Recheck Cond: ((cl = 10000) AND (c5 = 10000))
Rows Removed by Index Recheck: 76
Heap Blocks: exact=76
-> Bitmap Index Scan on bll _blooml (cost=0.00..17848.00 rows=1
width=0) (actual time=8.337..8.337 rows=77 loops=1)
Index Cond: ((cl = 10000) AND (c5 = 10000))
Planning time: 0.123 ms
Execution time: 8.579 ms

(8 rows)

o Enhancement of pageinspect module

The real data (t_data) column has been added to the output of the heap page items function.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 9 Execution of heap_page_items function

postgres=# CREATE EXTENSION pageinspect ;

CREATE EXTENSION

postgres=# SELECT lp,t_data FROM heap_page_items(
get_raw_page('inspl’', 0)) ;

1p | t_data
e e e e e
1 | \x0boe8064000b696€6974
2 | \x0boe80c800Ob696e6974

(2 rows)

3.1.4 Avoid Full-Table Vacuum
PostgreSQL manages the age of transaction (XID) by the unsigned 32-bit integer. When huge number

of transactions are executed, it may be run out of 32-bit integer. For this reason, before running out of
the transaction ID, PostgreSQL updates old XIDs in the database to the special XID (FrozenXID = 2).
This process is called FREEZE. In FREEZE process of previous version, when it exceeds the specified
age with the parameter autovacuum_freeze max_age, full scan for the table was executed regardless
of whether the table was updated or not.

In PostgreSQL 9.6, by extending the Visibility Map to identify the block to be FREEZEed, now it is

possible to prevent the large-scale I/O due to the full scan.

3.1.5 Improve CHECKPOINT
Checkpoint of the previous PostgreSQL searched dirty pages in the shared buffer randomly and wrote
them to file. In PostgreSQL 9.6, it divides the dirty pages for each table space, sort them by file and

block number and writes them. This will allow checkpoint process to write more sequentially.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

3.2 Utilities

The following sections describe the major enhancements of the utility commands.

3.2.1 psql

The following features in psql command has been added.
o Prompt setting
The Process ID of the backend process can be set now in the prompt of the psql command. To set the

Process ID , Specify the %p to the variable PROMPT1, PROMPT2, PROMPTS3.

Example 10 Specifying the prompt

postgres=> \set PROMPT1 '%/(%p)=> '
postgres(2619)=>

o Backslash commands

The following enhancements have been made.

Table 17 Added and modified backslash commands

Command Modification Description

\ev view_name Added Change the View definition by an external editor

\sv view_name Added Show the View definition

\sv+ view _name Added Show the View definition with line numbers

\gexec Added Run the SQL statements in the output result

\errverbose Added Show the error information that occurred just
before

\crosstabview column_name Added Show the cross tabulation

\x auto Changed Does not use extended table format with

EXPLAIN ANALYZE statement
\watch and \pset title Changed Show the value of the \pset title when executing

the \watch command

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

o Show and edit the VIEW definition.

\ev and \sv command has been added to the psql command. \ev command edits the specified view

definition in the editor. \sv command shows the specified view definition. The \sv+ command

displays the line number in the view definition.

Example 11 Reference of the VIEW definition

postgres=> CREATE VIEW viewl AS SELECT COUNT(*) cnt FROM datal ;
CREATE VIEW

postgres=> \sv+ viewl

1 CREATE OR REPLACE VIEW public.viewl AS
2 SELECT count(*) AS cnt

3 FROM datal

postgres=>

o Execute result(s) of previous query as new queries.

\gexec command executes the result(s) of the SQL Statement just before as new SQL Statements.

This is useful when creating the CREATE statement to generate the object using the SELECT

statement.

Example 12 Executes the output result

postgres=> SELECT 'CREATE TABLE data2(cl NUMERIC)' ;
?column?

CREATE TABLE data4(cl NUMERIC)

(1 row)

postgres=> \gexec

CREATE TABLE

o \watch and \pset title

At the time of execution in the \watch command, the string specified in the \pset title command is

now displayed.

© 2016 Hewlett-Packard Enterprise.

—

Hewlett Packard
Enterprise

Example 13 \watch and \pset title

postgres=> \pset title 'Demo Title'
Title is "Demo Title".
postgres=> SELECT COUNT(*) FROM datal ;
Demo Title
count
3000000
(1 row)
postgres=> \watch 1
Demo Title Wed May 13 12:07:41 2016 (every 1s)

0 Multiple -c option and -f option
-c option and -f option that specify the SQL statement to be executed at the time of connection, can

now be specified multiply.

3.2.2 pg_basebackup

--slot (or -S) option that specify the slot name to be used for the backup has been added to
pg_basebackup command. If non-existent slot name is specified, a warning will be shown, but the
backup process will be executed. When this option is specified along with the --write-recovery-conf
(-R) option, primary_slot name option will be added to the recovery.conf file in the backup destination.
In order to use the --slot option, it is required to use --xlog-method = setting of the stream (-Xs) option

at the same time.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 14 Specify the --slot option

$ pg_basebackup -D back -x -v -R --slot=slot_1 <« no -Xs option
pg_basebackup: replication slots can only be used with WAL streaming
Try "pg basebackup --help" for more information.

$

$ pg_basebackup -D back -v -R --slot=slot_X -Xs « not exists slot name
transaction log start point: 0/4000028 on timeline 1

pg_basebackup: starting background WAL receiver

pg_basebackup: could not send replication command "START_REPLICATION":
ERROR: replication slot "slot X" does not exist

transaction log end point: 0/4000130

pg_basebackup: waiting for background process to finish streaming ...
pg_basebackup: child process exited with error 1

$

$ pg_basebackup -D back -v -R --slot=slot_1 -Xs <« normal execution
transaction log start point: 0/6000028 on timeline 1

pg_basebackup: starting background WAL receiver

transaction log end point: 0/60000F8

pg _basebackup: waiting for background process to finish streaming ...

pg_basebackup: base backup completed

$

$ cat back/recovery.conf « Check the recovery.conf file

standby mode = ‘'on'

primary_conninfo = 'user=postgres port=5432 sslmode=disable

sslcompression=1"

primary slot name = 'slot 1'

$

$ 1s -1 back/pg_replslot/ < check the slot directory
total ©

$

The slot is not created at the backup destination for the database cluster.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

3.2.3 pg_rewind

Pg_rewind command can work when the target timeline changes. This feature is not verified. Please
refer to the following URL.

http://michael.otacoo.com/postgresql-2/postgres-9-6-feature-highlight-pg-rewind-timeline/

3.2.4 pg_dump / pg_restore

The --strict-names option has been added to the pg_dump command and pg_restore command. In
addition, -t option of pg_restore command also match relation other than the normal table. This feature

is not verified.

3.2.5 pgbench

Some of the new features in pgbench command has been added, but it does not have to verify.

© 2016 Hewlett-Packard Enterprise. -

http://michael.otacoo.com/postgresql-2/postgres-9-6-feature-highlight-pg-rewind-timeline/

—

Hewlett Packard
Enterprise

3.3 Changes of parameters

The following parameters have been changed in PostgreSQL 9.6.

3.3.1 Added Parameters

The following parameters have been added.

Table 18 Added Parameters

Parameter Name Description (context) Default Value
backend flush_after When single backend writes more than specified 128kB
size, attempt to force the OS to flush these writes
to disk. (user)
bgwriter flush after Bgwriter force the flush at the time of writing 512kB
occurrence greater than or equal to the specified
size (sighup)
checkpoint flush_after Checkpointer force the flush at the time of writing 256kB
occurrence greater than or equal to the specified
size (sighup)
enable fkey estimates Use the foreign key to estimate join cost. (user) on
force parallel mode Force parallel processing (user) off
idle_in_transaction _session Idle transaction timeout (user) 0
_timeout
max_parallel degree The maximum value of the degree of parallelism 2
(user)
old snapshot threshold The minimum time that a snapshot is guaranteed -1
valid. (postmaster)
replacement sort tuples The maximum number of tuples to be sorted using 150000
Replacement Selection (user).
parallel_setup cost Start cost of parallel processing (user) 1000
parallel tuple cost Tuple processing cost of parallel processing (user) 0.1
syslog_sequence numbers Add a sequence number to the SYSLOG message on
(sighup)
syslog_split messages Split long SYSLOG messages (sighup) on
wal writer flush_after Wal writer is forced to flush at the time of writing 1MB

occurrence greater than or equal to the specified

size (sighup)

© 2016 Hewlett-Packard Enterprise.

—

Hewlett Packard
Enterprise

o idle in_transaction_session_timeout parameter

When the transaction is idle for a specified period of time in milliseconds, specify the time to forcibly
disconnect the session. The default value is 0 in the time-out does not occur. Specify the parameters
from psql of the session in the following example and is running a COMMIT statement from a while

waiting after the BEGIN statement is executed.

Example 15 Automatic termination of the idle transaction

postgres=> SET idle_in_transaction_session_timeout = 1000 ;

SET

postgres=> BEGIN ;

BEGIN

postgres=> -- Wait 2 seconds

postgres=> COMMIT ;

FATAL: terminating connection due to idle-in-transaction timeout

server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.

The connection to the server was lost. Attempting reset: Succeeded.

O syslog sequence numbers parameter, syslog split messages parameter

In a message to be output to the SYSLOG to add the information. By setting the
syslog_sequence numbers parameter to on, the sequence number for each process in the message that
is output to the SYSLOG will be added. The default value is on. The syslog_split messages parameter
splits the message if the message has exceeded the PG_SYSLOG LIMIT (900) bytes.

The example below is the log of the instance startup. Process of process ID 3155 will being output
the message. [1-1], [1-2], [2-1], has been added in the syslog_sequence numbers parameter is part of

the [2-2].

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard

Enterprise

Example 16 Change of SYSLOG output

May 15 13:35:55 rel71-2 postgres[3155]: [1-1] LOG: redirecting log
output to logging collector process

May 15 13:35:55 rel71-2 postgres[3155]: [1-2] HINT: Future log output
will appear in directory "pg log".

May 15 13:35:55 rel71-2 postgres[3155]: [2-1] LOG: ending log output

to stderr

May 15 13:35:55 rel71-2 postgres[3155]: [2-2] HINT: Future log output

will go to log destination "syslog".

O

old snapshot_threshold parameter

This parameter specifies the survival time of the snapshot in seconds. Unnecessary tuple exceeds the

threshold value can be released by vacuum. The number of seconds that can be specified for this

parameter is from -1 to 86,400. However, you can specify up to 60d is to specify the number of days,

such as "1d". The default value of -1 in the same operation as the previous version, disable this feature.

Referring to the deleted snapshot error "ERROR: snapshot too old" will occur.

3.3.2 Changed Parameters

Table 19 Changed Parameters

The following parameters are changed in the range of setting or the options.

Parameter Name

Modification

log line prefix
effective_io_concurrency
wal_level
synchronous_commit
autovacuum_max_workers
max_connections
max_replication_slots
max_wal_senders
max_worker processes
superuser_reservrd connec
tions

wal_writer_delay

Set to output the time stamp of the numeric types have been added
It can now be specified in the ALTER TABLESPACE SET statement
Setting archive and hot_standby has been unified in the "replica"
The remote_apply can now be specified

The maximum value has been changed to 262,143 from 8,388,607
The maximum value has been changed to 262,143 from 8,388,607
The maximum value has been changed to 262,143 from 8,388,607
The maximum value has been changed to 262,143 from 8,388,607
The maximum value has been changed to 262,143 from 8,388,607
The maximum value has been changed to 262,143 from 8,388,607

Short_desc column of pg_settings catalog has been changed

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

o log line prefix parameter

Can now specify the % n which is numerical representation of a time stamp.

Example 17 Parameter log_line_prefix

$ grep log_line_prefix data/postgresql.conf
log line_prefix = '%n '
$ tail -1 data/pg_log/postgresql-2016-05-15_171832.1log

1460362712.163 LOG: autovacuum launcher started

o wal level parameter
"Archive" and "hot_standby" value for this parameter have been unified to "replica". However, when

archive or hot_standby is specified , the error doesn't occur and it is considered to be a replica.

Example 18 Parameter wal_level

$ grep wal_level data/postgresql.conf
wal level = hot_standby

$ psql

postgres=> show wal_level ;

wal_level

0 synchronous commit parameter

Value "remote apply” can now be specified for this parameter. Set this value, in a synchronous
replication environment, transaction of the master instance will wait until the WAL is applied on the
slave instance. This makes it possible to read the updated data on the slave instance at the time of the
completion of the transaction. If recovery min apply delay parameter is specified in the
recovery.conf file on the slave instance, the completion of the COMMIT statement on the master

instance will wait for the specified time.

3.3.3 Parameters changed the default value

The default values of the following parameters have been changed.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Table 20 Parameters the default value of which is changed

Parameter Name PostgreSQL 9.5 PostgreSQL 9.6
server_version 9.5.2 9.6betal
server_version_num 90502 90600

© 2016 Hewlett-Packard Enterprise.

—

Hewlett Packard
Enterprise

3.4 Enhancement for SQL statement

The new features on the SQL statement, are explained here.

3.4.1 Enhancement of the COPY statement

In the prior version it was able to use the COPY statement to output the results of the SELECT
statement to a file or standard output. In PostgreSQL 9.6, by specifying the UPDATE / DELETE /
INSERT statements to the COPY statement, it will be able to output the affected records.

Example 19 Specify the DELETE statement to COPY statement

postgres=# COPY (DELETE FROM datal WHERE coll < 100 RETURNING *) TO
'/home/postgres/datal.csv’' ;
COPY 5

In the above example 5 records that have been deleted by the DELETE statement are written to the
file. When specifying the DELETE, UPDATE, and INSERT statement RETURNING clause is

required .

Example 20 No RETURNING clause error

postgres=# COPY (DELETE FROM datal WHERE coll < 100) TO
'/home/postgres/datal.csv' ;
ERROR: COPY query must have a RETURNING clause

3.4.2 Enhancement of the ALTER TABLE ADD COLUMN statement
The ALTER TABLE ADD COLUMN statement to add a column, IF NOT EXISTS clause to check

for the existence of the column can now be specified. Only if the specified column does not exist, add

column operation will be performed.

Syntax

ALTER TABLE table_name ADD COLUMN IF NOT EXISTS column_name type

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 21 ALTER TABLE ADD COLUMN IF NOT EXISTS statement

postgres=> ALTER TABLE datal ADD COLUMN c3 CHAR(1) ;
ALTER TABLE
postgres=> ALTER TABLE datal ADD COLUMN IF NOT EXISTS c3 CHAR(1) ;

NOTICE: column "c3" of relation "datal" already exists, skipping
ALTER TABLE
postgres=> ALTER TABLE datal ADD COLUMN IF NOT EXISTS c4 CHAR(1) ;
ALTER TABLE

3.4.3 Enhancement of the ALTER TABLESPACE SET statement

In PostgreSQL 9.6 it is now possible to set the parameter effective io_concurrency for each

tablespace. Parameters that can be specified for each tablespace in the old version was only

random_page cost and seq_page cost.

Example 22 Enhancement of the ALTER TABLESPACE statement

postgres=# ALTER TABLESPACE tsl SET (effective_io_concurrency = 2) ;
ALTER TABLESPACE
postgres=# \db+ tsl
List of tablespaces
Name | Owner | Location | Access privileges |

Options | Size | Description

tsl | demo | /home/postgres/tsl |
{effective io concurrency=2} | 472 kB |

(1 row)

3.4.4 Enhancement of the CREATE EXTENSION statement

To CREATE EXTENSION statement, CASCADE clause to automatically load the relevant module

can now be specified.

Syntax

CREATE EXTENSION module_name [CASCADE]

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 23 CREATE EXTENSION CASCADE statement

postgres=# CREATE EXTENSION earthdistance ;

ERROR: required extension "cube" is not installed

HINT: Use CREATE EXTENSION CASCADE to install required extensions too.
postgres=#

postgres=# CREATE EXTENSION earthdistance CASCADE ;

NOTICE: installing required extension "cube"

CREATE EXTENSION

postgres=#

3.4.5 Enhancement of the ALTER OPERATOR statement

ALTER OPERATOR statement to make the change of the operator have been significantly enhanced.
It can be added use the following syntax as well as the CREATE OPERATOR statement.

Syntax

ALTER OPERATOR name ({type}, {type}) SET RESTRICT res_proc
ALTER OPERATOR name ({type}, {type}) SET JOIN join_proc

ALTER OPERATOR name ({type}, {type}) SET RESTRICT NONE
ALTER OPERATOR name ({type}, {type}) SET JOIN NONE

3.4.6 Added function for jsonb type

Function for jsonb type has been added.

0 Function jsonb_insert

Jsonb_insert function to perform additional elements have been provided.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 24 Function jsonb_insert

postgres=> SELECT jsonb_insert(
‘{"a": [0,1,2]}', '{a, 1}', '"new_value"') ;
jsonb_insert
{"a": [0, "new_value", 1, 2]}

(1 row)

postgres=> SELECT jsonb_insert(
{"a": [0,1,2]}', '{a, 1}', '"new_value"', true) ;
jsonb_insert
{"a": [0, 1, "new_value", 2]}

(1 row)

3.4.7 Additional Functions

Following function have been enhanced in PostgreSQL 9.6.

o scale function
By specifying a number of numeric type as the parameter, this function returns the number of decimal

places. It cannot be used for a float type value. If NULL is passed, it returns NULL.
0 num nulls / num_ nonnulls functions
Returns the number of NULL values from any number of arguments (num_nulls), returns the number

of non-NULL value (num_nonnulls).

Example 25 num_nulls / num_nonnulls functions

postgres=> SELECT num_nulls(1, 'A', NULL), num_nonnulls(l, 'A', NULL) ;

num_nulls | num_nonnulls

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

O current_setting function
The overloaded function that has second parameter has been created. When specified true for the

second parameter, no error occurs if specified a non-existent parameter.

Example 26 current_setting function

postgres=> \pset null null

Null display is "null".

postgres=> SELECT current_setting('modulel.paraml’) ;

ERROR: unrecognized configuration parameter "modulel.paraml®
postgres=>

postgres=> SELECT current_setting('modulel.paraml’', true) ;

current_setting

O pg_control * functions
It is now possible to get the information by SQL function, conventionally that has been acquired by
the pg_controldata command by SQL function. The following functions can be used. General users

can use these functions.

Table 21 Added functions

Function Name Description

pg_control init Acquiring of database cluster information
pg_control checkpoint Acquiring of checkpoint information

pg_control recovery Acquiring of recovery information

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 27 Execute pg_control_init function

postgres=> \x

Expanded display is on.

postgres=> SELECT * FROM pg_control_init() ;
-[RECORD 1 J-----------=- TR
max_data_alignment | 8
database _block size | 8192
blocks_per_segment | 131072
wal block_size | 8192
bytes_per_wal_segment | 16777216
max_identifier_length | 64
max_index_columns | 32
max_toast_chunk_size | 1996
large_object_chunk_size | 2048
bigint_timestamps | t

float4 pass_by value | t

float8 pass_by value | t
data_page checksum_version | @

© 2016 Hewlett-Packard Enterprise.

—

Hewlett Packard
Enterprise

Example 28 Execute pg_control_checkpoint function

postgres=> \x

Expanded display is on.

postgres=> SELECT * FROM pg_control_checkpoint() ;
-[RECORD 1]-------- T
checkpoint_location | ©/E52BD28

prior_location | ©/E42B3C8

redo_location | ©/E52BD28

redo wal file | 00000001000000000000ROE
timeline_id | 1

prev_timeline_id | 1

full _page writes | t

next_xid | 0:1767

next_oid | 24576

next_multixact_id | 1

next_multi_ offset | o

oldest_xid | 1748

oldest xid_dbid | 1

oldest_active xid | o

oldest_multi_xid | 1

oldest multi_dbid | 1

oldest _commit_ts xid | @

newest commit ts xid | @

checkpoint_time | 2016-05-18 15:24:31+09

Example 29 Execute pg_control_recovery function

postgres=> \x
Expanded display is on.
postgres=> SELECT * FROM pg_control_recovery() ;

-[RECORD 1 J------mmmmmmmmmu- +----
min_recovery_end_location | o/0
min_recovery_end_timeline | o

backup_start_location | o/0
backup_end_location | o/0

end_of_backup_record_required | f

© 2016 Hewlett-Packard Enterprise.

—

Hewlett Packard
Enterprise

o pg_current xlog flush location function
Function pg_current_xlog_flush location that returns the LSN indicating the writing location of the
WAL file has been added. General users can execute this function, but cannot execute in slave instance

of the replication environment.

Example 30 pg_current_xlog_flush_location function

postgres=> SELECT pg_current_xlog_flush_location() ;
pg_current_xlog flush_location

/3000060

(1 row)

O parse_ident function
This function decompose a string indicating the name of the object that contains the schema name
into an array consists of schema and object names. The presence of the specified object is not checked.

Also search_path parameter is not considered.

Example 31 parse_ident function

postgres=> SELECT parse_ident('public.datal') ;

parse_ident

{public,datal}
(1 row)

O pg_size bytes function
Pg_size bytes function returns the number of bytes from the string specified in units of kB, MB, GB
and TB. This is the opposite behavior of pg_size pretty function. It can be put a space between the

number and the unit.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 32 pg_size_bytes function

postgres=> SELECT pg_size bytes ('1.2 TB') ;
pg_size_ bytes

1319413953331

(1 row)

o pg_blocking pids function

Returns a list of processes that are blocking the process specified by process ID.

Example 33 pg_blocking pids function

postgres=> SELECT pg_blocking_pids(2953) ;
pg_blocking_pids

{2950}
(1 row)

o Extend pg_start_backup / pg_stop_backup functions

The pg_start_backup function and the pg_stop_backup function, parameters for the
exclusive control "exclusive" (boolean) has been added. The default value is false, the
behavior is the same as previous versions. It does not create the backup_label files and
tablespace_map file if you specify the "exclusive" parameter to false. Pg_stop_backup

function you must specify the same mode as the pg_start_backup function.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 34 pg_start_backup / pg_stop_backup functions

postgres=# SELECT pg_start_backup('backl', true, false) ;
pg_start_backup

0/4C000028

(1 row)

postgres=# -- Do online backup

postgres=# SELECT pg_stop_backup(true) ;

ERROR: non-exclusive backup in progress

HINT: did you mean to use pg_stop_backup('f')?

postgres=#

postgres=# SELECT pg_stop_backup(false) ;

NOTICE: pg_stop_backup complete, all required WAL segments have been archived
pg_stop_backup

(0/4C0000F8, "START WAL LOCATION: 0/4C000028 (file 00000001000000000000004C)+

CHECKPOINT LOCATION: ©/4C000060 +
BACKUP METHOD: streamed +
BACKUP FROM: master +
START TIME: 2016-06-01 09:51:03 JST +
LABEL: backl +
(1 row)

o Unverified functions
The following functions have been added, but the behavior is not verified.
® pg notification_queue usage

® acosd/ asind / atan2d / atand / cosd / cotd / sind / tand

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

3.5 Parallel Seq Scan

3.5.1 Overview

In the conventional PostgreSQL, all of the SQL statements ware executed only by the
back-end process that accepts the connection. In PostgreSQL 9.6 now it is possible to perform

parallel processing by multiple worker processes.

Figure 1 Parallel Seq Scan / Parallel Aggregate

Storage

Parallel processing can be executed only for Seq Scan, Join and Aggregate. The degree of parallelism
depends on the size of the table. Processes executing parallel processing use the mechanism of the
Background Worker. The maximum value of the degree of parallelism is determined by the parameter
max_parallel degree or max worker processes, whichever is smaller. Parameter

max_parallel degree can be changed by general users by per-session.

Table 22 Related parameters for parallel processing

Parameter Name Description (context) Default value
max_parallel degree The maximum value of the degree of parallelism (user) 2
parallel_setup cost Start cost of parallel processing (user) 1000

parallel tuple cost Tuple cost of parallel processing (user) 0.1

max_worker processes The maximum value of the worker process 8
(postmaster)

force parallel mode Force parallel processing (user) off

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

0 Parameter force parallel mode

Parallel processing is executed only when the cost is considered lower than the normal serial
processing. By specifying the parameter force parallel _mode to on, parallel processing is forced (Also
value 'regress' is for the regression test). However, the parallel processing is executed only when the

parameter max_parallel degree is 1 or more.

o Related table option

Table option parallel degree determines the degree of parallelism for each table. When the value is
set to 0, parallel processing is prohibited. If not set, the parameters max_parallel degree of the session
will be the upper limit.

If parallel degree is set to greater than the max_parallel degree, the upper limit of the actual degree

of parallelism cannot exceed the max_parallel degree.

Example 35 Execution plan of parallel processing.

postgres=> ALTER TABLE datal SET (parallel_degree = 2) ;
ALTER TABLE
postgres=> \d+ datal

Table "public.datal"

Column | Type | Modifiers | Storage | Stats target | Description
———————— LT L T T T e LT
cl | numeric | | main | |
c2 | character varying(1e) | | extended | |

Options: parallel degree=2

3.5.2 Execution plan
The example below is the execution plan of the parallel processing SELECT statement. COUNT

processing of large-scale table is processed in 3 parallelism.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 36 Execution plan of parallel processing

postgres=> SET max_parallel_degree = 10 ;
SET
postgres=> EXPLAIN (ANALYZE, VERBOSE) SELECT COUNT(*) FROM datal ;

QUERY PLAN

Finalize Aggregate (cost=29314.09..29314.10 rows=1 width=8)

(actual time=662.055..662.055 rows=1 loops=1)
Output: pg_catalog.count(*)
-> Gather (cost=29313.77..29314.08 rows=3 width=8)
(actual time=654.818..662.043 rows=4 loops=1)
Output: (count(*))

Workers Planned: 3

Workers Launched: 3

-> Partial Aggregate (cost=28313.77..28313.78 rows=1 width=8)
(actual time=640.330..640.331 rows=1 loops=4)
Output: count(*)
Worker ©: actual time=643.386..643.386 rows=1 loops=1
Worker 1: actual time=645.587..645.588 rows=1 loops=1
Worker 2: actual time=618.493..618.494 rows=1 loops=1

-> Parallel Seq Scan on public.datal (cost=0.00..25894.42

rows=967742 width=0) (actual time=0.033..337.848 rows=750000 loops=4)
Output: c1, c2
Worker @: actual time=0.037..295.732 rows=652865 loops=1
Worker 1: actual time=0.026..415.235 rows=772230 loops=1
Worker 2: actual time=0.042..359.622 rows=620305 loops=1
Planning time: ©.130 ms
Execution time: 706.955 ms

(18 rows)

Following execution plan component can be shown by the EXPLAIN statement about parallel

processing.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Table 23 The output of the EXPLAIN statement

Plan component Description Explain Statement
Parallel Seq Scan Parallel search processing All
Partial Aggregate Aggregation processing performed by the All
worker process
Gather Processing to aggregate the worker process All
Finalize Aggregate The final aggregation processing All
Workers Planned: The number of planned worker processes All

Workers Launched: The number of workers that are actually run ANALYZE
Worker N (N=0,1,...) Processing time of each worker, etc ANALYZE, VERBOSE

Single Copy Processing to be executed in a single process All

3.5.3 Parallel processing and functions

There are usable functions and unusable functions in parallel processing. When functions which have
'W'(PARALLEL UNSAFE) value for proparallel column in pg_proc catalog are user in SQL statement,
parallel processing can not be performed. The following table shows major standard PARALLEL
UNSAFE functions.

Table 24 Major PARALLEL UNSAFE standard functions

Category Function name example

JSON json_populate record, json populate recordset, jsonb_insert, jsonb_set

SEQUENCE object nextval, currval, setval, lastval

Large Object lo_*, loread, lowrite
Replication pg_create * slot, pg drop * slot, pg logical *, pg replication *
Other pg_advisory *, pg_try advisory *, plpgsql * handler,

pg_extension config dump, pg * backup, set config, txid current,

query to xml*

In the following example, two SQL statements that differ only conditional part of the WHERE clause
are executed. SELECT statement with the literal in the WHERE clause will be performed parallel
processing but, SELECT statement with the currval of sequence operation function is executed in

serial.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 37 The difference of the execution plan by the use of PARALLEL UNSAFE function

postgres=> EXPLAIN SELECT COUNT(*) FROM datal WHERE c1=10 ;
QUERY PLAN
Aggregate (cost=29314.08..29314.09 rows=1 width=8)
-> Gather (cost=1000.00..29314.07 rows=3 width=0)
Workers Planned: 3

-> Parallel Seqg Scan on datal (cost=0.00..28313.78 rows=1 width=0)

Filter: (cl = '10'::numeric)

(5 rows)

postgres=> EXPLAIN SELECT COUNT(*) FROM datal WHERE cl=currval('seql') ;
QUERY PLAN
Aggregate (cost=68717.01..68717.02 rows=1 width=8)
-> Seg Scan on datal (cost=0.00..68717.00 rows=3 width=0)
Filter: (cl = (currval('seql'::regclass))::numeric)

(3 rows)

In pg_proc in the catalog, functions that are the proparallel column 'r' can only be run on the leader

process of parallel processing.

Table 25 Major RESTRICTED PARALLEL SAFE standard functions

Category Function name example

Date and Age age, now

Random number random, setseed

Upgrade binary upgrade*

Convert to XML cursor_to_xml*, database to xml*, schema to xml*, table to xml*
Other pg_start backup, inet client*, current query, pg backend pid, pg_conf*,

pg_cursor, pg_get viewdef, pg prepared_statement, etc

o User-defined functions and PARALLEL SAFE

To indicate whether it is possible to perform parallel processing for user-defined functions, can be
used PARALLEL SAFE clause or PARALLEL UNSAFE clause in the CREATE FUNCTION
statement or ALTER FUNCTION statement. The default is PARALLEL UNSAFE.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 38 User-defined functions and PARALLEL SAFE

postgres=> CREATE FUNCTION add(integer, integer) RETURNS integer
postgres-> AS 'select $1 + $2;°'

postgres-> LANGUAGE SQL IMMUTABLE RETURNS NULL ON NULL INPUT ;

CREATE FUNCTION

postgres=> SELECT proname, proparallel FROM pg_proc WHERE proname = 'add' ;

proname | proparallel

(1 row)

postgres=> ALTER FUNCTION add(integer, integer) PARALLEL SAFE ;

ALTER FUNCTION

postgres=> SELECT proname, proparallel FROM pg_proc WHERE proname='add' ;

proname | proparallel

3.5.4 Calculation of the degree of parallelism

The degree of parallelism is calculated based on the size of the table, it is increased by one as the size
of table is 3,000 blocks, 9,000 blocks and 27,000s block. After that, it is increased as the size of table
becomes threefold within the range that does not exceed the parameter max parallel degree or
parameter max_worker processes. Actual calculation is executed by create parallel paths function in

the source code src/backend/optimizer/path/allpaths.c.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 39 The part of create_parallel_paths function

int parallel_threshold = 1000;

/*
* If this relation is too small to be worth a parallel scan, just
* In that case, we want to generate a parallel path here anyway. It
* might not be worthwhile just for this relation, but when combined
* with all of its inheritance siblings it may well pay off.
*/
if (rel->pages < parallel threshold &&
rel->reloptkind == RELOPT_BASEREL)

return;

/*

* Limit the degree of parallelism logarithmically based on the size
* of the relation. This probably needs to be a good deal more

* sophisticated, but we need something here for now.

*/

while (rel->pages > parallel_threshold * 3 &&

parallel _degree < max_parallel degree)

{
parallel_degree++;
parallel threshold *= 3;
if (parallel_threshold >= PG_INT32_MAX / 3)
break;
}

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

3.6 Monitoring Wait Stats

The information of the wait events that are occurring in the PostgreSQL instance can be get now.
Waiting column is deleted from pg_stat activity catalog, wait_event type columns and wait_event

column are added. The wait_event type column contains the following values.

Table 26 The value of wait_event_type column

Columns value Description

LWLockNamed Waiting by a particular lightweight lock
LWLockTranche Waiting by the lightweight lock for the group

Lock Waiting by weight lock (LOCK TABLE statement etc)
BufferPin PIN waiting for the buffer

Please refer to the following URL for more information.

http://www.postgresql.org/docs/9.6/static/monitoring-stats.html

Example 40 Waiting by two LOCK TABLE IN EXCLUSIVE statements

postgres=> SELECT pid, wait_event_type, wait_event
FROM pg_stat_activity WHERE pid=4070 ;

pid | wait_event_type | wait_event
______ e
4070 | Lock | relation

(1 row)

Example 41 Waiting by SELECT FOR UPDATE statement and UPDATE statement

postgres=> SELECT pid, wait_event_type, wait_event
FROM pg stat_activity WHERE pid=4070 ;

pid | wait_event type | wait_event
______ e e e e e e m
4070 | Lock | transactionid
(1 row)

© 2016 Hewlett-Packard Enterprise. -

http://www.postgresql.org/docs/9.6/static/monitoring-stats.html

—

Hewlett Packard
Enterprise

3.7 Enhancement of FOREIGN DATA WRAPPER
FOREIGN DATA WRAPPER to provide access to external objects has been extended.

3.7.1 Sort Push-down

In previous versions sort processing for FOREIGN TABLE were executed on the local instance after
data were transferred from the external system. In PostgreSQL 9.6 the ORDER BY clause can be sent
to external objects. In the following example, the SELECT statement with the ORDER BY clause to

the remote instance is executed using the postgres fdw module.

Example 42 Sort Push-down

postgres=> EXPLAIN (ANALYZE, VERBOSE) SELECT * FROM tablel ORDER BY 1 ;
QUERY PLAN
Foreign Scan on public.tablel (cost=100.00..139.87 rows=871 width=70)
(actual time=0.986..7109.985 rows=1000000 loops=1)
Output: c1, c2
Remote SQL: SELECT cl1, c2 FROM public.tablel ORDER BY cl1 ASC NULLS LAST

Planning time: ©.130 ms
Execution time: 7201.854 ms

(5 rows)

The example shows that the ORDER BY clause in SQL Statement for table1l which is a FOREIGN

TABLE is executed on the remote instance.

3.7.2 Direct Modify

DELETE and UPDATE statements in the old version for FOREIGN TABLE created cursors by
SELECT FOR UPDATE statement, the update process was executed for each record in the cursor. In
PostgreSQL 9.6 update DML can be executed directly in the remote instance.

In the following example, the DELETE statement to FOREIGN TABLE is executed in PostgreSQL
9.5 and PostgreSQL 9.6. In PostgreSQL 9.5 SELECT FOR UPDATE statement is executed, but it
changes to DELETE statement in PostgreSQL 9.6.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 43 DELETE statement in PostgreSQL 9.5

postgres=> EXPLAIN (ANALYZE, VERBOSE) DELETE FROM datal WHERE c1=100 ;
QUERY PLAN
Delete on public.datal (cost=100.00..144.40 rows=14 width=6)
(actual time=582.328..582.328 rows=0 loops=1)
Remote SQL: DELETE FROM public.datal WHERE ctid = $1
-> Foreign Scan on public.datal (cost=100.00..144.40 rows=14 width=6)
(actual time=527.345..527.347 rows=1 loops=1)
Output: ctid
Remote SQL: SELECT ctid FROM public.datal WHERE ((cl = 100::numeric))

FOR UPDATE
Planning time: ©.746 ms
Execution time: 583.628 ms

(7 rows)

Example 44 DELETE statement in PostgreSQL 9.6

postgres=> EXPLAIN (ANALYZE, VERBOSE) DELETE FROM datal WHERE c1=100 ;
QUERY PLAN
Delete on public.datal (cost=100.00..144.40 rows=14 width=6)
(actual time=1.019..1.019 rows=0 loops=1)
-> Foreign Delete on public.datal (cost=100.00..144.40 rows=14 width=6)
(actual time=1.016..1.016 rows=1 loops=1)
Remote SQL: DELETE FROM public.datal WHERE ((cl = 100::numeric))

Planning time: ©.222 ms
Execution time: 1.414 ms

(5 rows)

3.7.3 Join Push-down

A process to join the tables on the same FOREIGN SERVER can now be performed on a remote

instance.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Example 45 Join Push-down

postgres=> CREATE FOREIGN TABLE foreignl(cl numeric, c2 varchar(10)) SERVER remsvrl ;
CREATE FOREIGN TABLE
postgres=> CREATE FOREIGN TABLE foreign2(cl numeric, c2 varchar(10)) SERVER remsvrl ;
CREATE FOREIGN TABLE
postgres=>
postgres=> EXPLAIN (ANALYZE, VERBOSE) SELECT COUNT(*) FROM
foreignl f1, foreign2 f2 WHERE fl.cl = f2.c1l AND fl.cl = 100 ;
QUERY PLAN
Aggregate (cost=35912.03..35912.04 rows=1 width=8)
(actual time=2.558..2.558 rows=1 loops=1)
Output: count(*)
-> Foreign Scan (cost=100.00..35912.03 rows=1 width=0)
(actual time=2.549..2.550 rows=1 loops=1)
Relations: (public.foreignl f1) INNER JOIN (public.foreign2 f2)
Remote SQL: SELECT NULL FROM (public.foreignl rl INNER
JOIN public.foreign2 r2 ON (((r2.cl = 100::numeric)) AND
((rl.cl = 100::numeric))))
Planning time: ©.284 ms
Execution time: 3.822 ms

(7 rows)

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

3.8 Multiple synchronous standby servers

Support synchronous replication with multiple synchronous standby servers. Specify the number of
instances to execute synchronous replication to the parameter synchronous_standby names in primary

instance.

Syntax

synchronous_standby_names = num_sync (application_name, application_name, ..)

Specify the number of instances to execute synchronous replication to the num_sync in integer of 1
or more. If specified zero or less , if omitted, the instance can't start. If the specified number of
instances cannot be ensured, update transaction of the primary instance is stopped. In the example
below, there are three instances that can execute synchronous replication, and execute synchronous

replication to two instance actually.

Example 46 Multiple synchronous standby server replication

postgres=> SHOW synchronous_standby_names ;
synchronous_standby_names

2 (standbyl, standby2, standby3)

(1 row)

postgres=> SELECT application_name, sync_state FROM pg_stat_replication ;

application_name | sync_state

__________________ RO
standby1l | sync
standby?2 | sync
standby3 | potential

(3 rows)

The parameter synchronous standby names can be written in the same format as the previous

version. In that case instance that can execute synchronous replication is one.

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

3.9 Security

3.9.1 Default Role

Pg_signal backend role is created in default. This role allow the transmission of the signal to the

backend processes.

3.9.2 Namespace

Role (user) names that begin with pg_ are no longer able to use because those are reserved.

Example 47 Role names starting from "pg_"

postgres=# CREATE ROLE pg testl ;
ERROR: role name "pg_testl" is reserved

DETAIL: Role names starting with "pg_" are reserved.

$ initdb --username=pg admin data

initdb: superuser name "pg_admin" is disallowed; role names cannot begin
with "pg "

$

© 2016 Hewlett-Packard Enterprise. -

—

Hewlett Packard
Enterprise

Bibliography

I have referred to the following Website.

o Release Notes

http://www.postgresql.org/docs/9.6/static/release-9-6.html

o Commitfests
https://commitfest.postgresgl.org/
o PostgreSQL 9.6 Beta Manual

http://www.postgresql.org/docs/9.6/static/index.html
o GitHub (Mirror of the official PostgreSQL GIT repository)

https://github.com/postgres/postgres
o Announce of PostgreSQL 9.6 Beta 1

http://www.postgresql.org/about/news/1668/
o Newln96

https://wiki.postgresql.org/wiki/NewIn96

o Open source developer based in Japan (Michael Paquier)
http://michael.otacoo.com/
o Hibi-no kiroku bekkan (Nuko(@ Yokohama) [In Japanese]

http://d.hatena.ne.jp/nuko_yokohama/

© 2016 Hewlett-Packard Enterprise.

http://www.postgresql.org/docs/9.6/static/release-9-6.html
https://commitfest.postgresql.org/
http://www.postgresql.org/docs/9.6/static/index.html
https://github.com/postgres/postgres
http://www.postgresql.org/about/news/1668/
https://wiki.postgresql.org/wiki/NewIn96
http://michael.otacoo.com/
http://d.hatena.ne.jp/nuko_yokohama/

—

Hewlett Packard
Enterprise

Modification History

History

Version# Date Author Description

1.0 May 30,2016 Noriyoshi Shinoda Created to be published to the Internet.

1.0.2 June 2,2016 Noriyoshi Shinoda Add pg_start_backup / pg_stop_backup

© 2016 Hewlett-Packard Enterprise.

—

Hewlett Packard
Enterprise

—

Hewlett Packard
Enterprise

© 2016 Hewlett-Packard Enterprise. -

