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Have you ever run across a document that sounded really interesting and useful, but after
a short while you found out it was several years old and horribly outdated? Well, if you
are reading this revision of the Performance Cookbook in 2015, then go no further. By
2015 this paper will be obsolete because all systems will tune themselves using ROI-
regeneration beams anyways. If, however, if it’s more like 2009 or 2010, then you are in
luck: you have stumbled across an old document, but we have managed to update it and
keep it (relatively) current! For those of you who have studiously studied the 2008
revision of this cookbook, we have some more good news for 2009: there are not a whole
lotta changes in this rev so your knowledge has not become obsolete. We have added a
few tidbits about disk I/O, a “gotcha” with regards to memory metrics, and clarified the
NUMA/Oracle discussion, but generally the principles outlined here seem to have
withstood the test of time.

As with previous releases of the cookbook, note that:

- We’re not diving down to nitty gritty detail on any one topic of performance.
Entire books have been written on topics such as SAP, Java and Oracle
performance. This cookbook is an overview, based on common problems we see
our customers hitting across a broad array of environments.

- We continue to take great liberties with the English language. To those of you
who know English as a second language, we can only apologize in advance, and
give you permission to skip over the parts where Stephen’s New Jersey accent
gets too thick.

- If you are looking for a professional, inoffensive, reverent, sanitized, Corporate-
approved and politically correct document, then read no further. Instead, contact
your official HP Support Representative to submit an Enhancement Request. They
will send you to a web page. The web page may require you to go through a
complex registration procedure, or it may simply be down. Opinions expressed
herein are the authors’, and are not official positions of Hewlett-Packard, its
subsidiaries, acquisitions, or distant cousins.

- Our target audience is system administrators who are somewhat familiar with the
HP performance tools. We reference metrics often from Glance and what-used-to-



be-known-as-OpenView Performance Agent, though some of these metrics are
also available in other tools.

This paper’s focus is on HP-UX 11.23 and 11.31, both PA-RISC and Itanium (also called
IA64, IPF, Integrity, or whatever). By now, you should have moved your servers off
11.11 if you possibly could. The 11.2x bits have been out for years now, and 11.31 also
for a while! They’re stable! As HP employees, we’re supposed to call 11.23 by its official
name “11i version2,” and 11.31 by “11i version3” but we REFUSE.

Here are the tried and true general rules of thumb for performance management:

- Don’t fix that what ain’t broke. If your users are happy with their application’s
performance, then why muck with things? You got better things to do. Take the
time to build up your own knowledge of what ‘normal’ performance looks like on
your systems. Later, if something goes wrong, you’ll be able to look at historical
data and use your knowledge to drill down quickly and isolate the problem.

- You have to be willing to do the work to know what you’re doing. In other words,
you can’t expect to make your systems tick any better if you don’t know what
makes them tick. So... if you really have no idea why you’re changing something,
or what it means, then do the research first before you shoot yourself in the foot.
HP-Education has a good set of classes on HP-UX, and there are several books
(such as Chris Cooper’s “HP-UX Internals”), as well as numerous papers on HP-
UX and performance-related topics.

- When you go to make changes, try to change just one thing at a time. If you
reconfigure 12 kernel variables all at once, chances are things will get worse
anyway, but even if it helps, you’ll never know which change made the difference.
If you tweak only one thing, you’ll be able to evaluate the impact and build on that
knowledge.

- None of the information in this paper comes with a guarantee. If this stuff were
simple, we would have to find something else to keep us employed (like Cloud
Computing). If anything in this cookbook doesn’t work for you, then please let us
know — but don’t sue us!

- As a performance guru, you must learn to chant the magic words: “IT
DEPENDS.” While this can be used as a handy excuse for any behavior or result,
it is true that every system is different. A configuration that might work great on
one system may not work great on another. You know your systems better than we
do, so keep that in mind as you proceed.

If you want to get your money’s worth out of reading this document (remember how
much you paid for it?), then scour every paragraph from here to the end. If you’re feeling
lazy (like us), then skip down to the Resource Bottlenecks section unless you are setting



up a new machine. For each bottleneck area down there, we’ll have a short list of
bottleneck ingredients. If your system doesn’t have those ingredients (symptoms), then
skip that subsection. If your situation doesn’t match any of our bottleneck recipes, then
you can tell your boss that you have nothing to do, and you’re officially H.P.U.U. (Highly
Paid and Under-Utilized). These days especially, this designation may qualify you for
certain special programs through your employer!

System Setup

If you are setting up a system for the first time, you have some choices available to you
that people trying to tune existing 24x7 production servers don’t have. In preparing for a
new system, we are confident that you have intensely researched system requirements,
analyzed various hardware options, and of course you’ve had the most bestest advice
from HP as to how to configure the system. Or not. It’s hard to tell whether you’ve
bought the right combination of hardware and software, but don’t worry, because you’ll
know shortly after it goes into production.

CPU Setup

If you’re not going to be CPU-bottlenecked on a given system, then buying more
processors will do no good. If you have a CPU-intensive workload (and this is common),
then more CPUs are usually better. Some applications scale well (nearly linearly) as the
number of CPUs increases: this is more likely to happen for workloads spending most of
their CPU time in User mode as opposed to System mode, though there are no guarantees.
Some applications definitely don’t scale well with more processors (for example, an
application that bottlenecks on one single-threaded process!). For some workloads,
adding more processors introduces more lock contention, which reduces scaling benefits.
In any case, faster (newer) processors will significantly improve throughput on CPU-
intensive workloads, no matter how many processors you have in the system.

Itanium processors

Integrity servers run programs compiled for Itanium better than programs compiled for
PA-RISC (this is not rocket science). It is fine for an application to run under PA
emulation as long as it ain’t performance-critical. When performance of the app is very
important, especially if its working set is large and it is CPU-intensive, then you should
try to get an Itanium (native) version. Perhaps surprisingly, we assert that there is no
difference for performance whether a program uses 64bit address space or 32bit address
space on Itanium. Therefore people clamoring for 64bit versions of this or that
application are misguided: only programs accessing terabytes of data (like Oracle) take
advantage of 64bit addressing. You get the same performance boost compiling for



Itanium in native 32bit mode! Therefore the key thing for Itanium performance is to go
native, not to go 64bit.

Most multi-core and hyperthreading experience comes from the x86 world, and we are
still waiting to see how these chip technologies translate to HP-UX experience over time,
but generally Doug categorizes these features as “ways to pretend you have more CPUs
than you really got”. A cynical person might say “thanks for giving me twice as many
CPUs running half as fast”. If cost were not a concern, then performance would always be
better on eight independent single-core non-hyperthreaded CPUs than on four dual-core
CPUs, or four single-core hyperthreaded CPUs, or whatever other combinations that lead
to eight logical processing engines. What’s really happening with multi-core systems and
even moreso for hyperthreading are that you are saving hardware costs by making a single
processor board behave like multiple logical processors. Sometimes this works (when, for
example, an application suffers a lot of ‘stalling’ that another app running on a
hyperthread or dual core could take advantage of), and sometimes it doesn’t work (when,
for example, applications sharing a processor board contend on a shared cache or bus).
The problem is that there’s little instrumentation at that low level to tell you what is
happening, so you either need to trust benchmarks or experiment yourself. The authors
are interested in hearing your findings: send us an email. We like to learn too!

OS versions

For a new install you will set up with the latest patch bundle of 11.23 or more likely these
days 11.31 (11iv3). The 11.31 release is mature at this point and we encourage you to try
it (with the latest patches!). The 11.23 file system buffer cache is replaced by a Unified
File Cache (UFC) in 11.31, which is more efficient. Down towards the end of this paper
have a special section dedicated to the UFC.

The 11.31 release made significant performance improvements especially for the type of
app that does a lot of I/O (mass storage stack improvements). Some improvements to I/O
included automatic load balancing of I/Os on all available lun paths, choice of load
balancing algorithms (like cell aware round robin policy: it selects a path from the locality
of the CPU where the I/O was initiated), Parallel I/O scan to reduce scan time
significantly (also improves boot time), CPU allegiance algorithms to reduce cache
misses, and the maximum I/O size increased to 2MB., and the I/O MAX_queue_depth is
more flexible – can set per device, device type, vendor ID, product ID, etc. Generally,
11.31 can do more I/Os per second and take less CPU time to do them than 11.23. LVM
has been enhanced to support larger page sizes and newer revisions of VxFS are
available. Much of the native multi-pathing, load balancing and improved I/O
performance is due to improvements in cell locality. 11.31 has taken steps to reduce
cache miss and cache line sharing, and keep I/O scheduling in the cell where the CPU that
scheduled the I/O is.

The 11.31 kernel has per-thread locks (which used to be per-process). There are also new
kernel architected synchronizations for spinlocks, semaphores and mutexes that should



make things generally more zippy. In 2007, an official announcement came out from HP
that said “HP-UX 11i v3 delivers on average 30% more performance than HP-UX 11i v2
on the same hardware, depending on the application,..”. We have been assured that these
results were from real customer applications and not just benchmarks, which is great.
What we can say with complete confidence is: “your mileage may vary.”

We know some of you are ‘stuck’ on earlier revs because your app has not certified yet on
the latest OS. We’re sorry. The 11.23, especially as it has evolved over the past few years,
is very solid. Now, 11.31 contains more performance-oriented and scalability
enhancements. See what you can do to get your apps rolled forward, to take advantage of
the potential better performance from the OS!

Memory Setup

We always say “memory is cheap so buy lots” (yes this is a hardware vendor’s point of
view). Application providers will usually supply some guidelines for you to use for how
much memory you’ll need, though in practice it can be tough to predict memory
utilization. You do not want to get into a memory bottleneck situation, so you want
enough memory to hold the resident memory sets for all the applications you’ll be
running, plus the memory needed for the kernel, plus the file page cache (buffer cache).

If you’re going to be hosting a database, or something else that benefits from a large in-
memory cache, then it is even more essential to have ample memory. Oracle installations,
for example, can benefit from ‘huge’ SGA configurations (gigabyte range) for buffer
pools and shared table caches.

Resident memory and virtual memory can be tricky. Operating systems pretend to their
applications that there is more memory on your system than there really is. This trick is
called Virtual Memory, and it essentially includes the amount of memory allocated by
programs for all their data, including shared memory, heap space, program text, shared
libraries, and memory-mapped files. The total amount of virtual memory allocated to all
processes on your system roughly translates to the amount of swap space that will be
reserved (with the exception of program text). Virtual memory actually has little to do
with how much actual physical memory is allocated, because not all data mapped into
virtual memory will be active (‘Resident’) in physical memory. When your program gets
an “out of memory” error, it typically means you are out of reservable swap space
(Virtual memory), not out of physical (Resident) memory.

With superdomes (and the “r’fill-in-the-blank’ cell-based” systems), you have the added
complexity of Cell Local Memory / NUMA and related stuff. Our general
recommendation: do not muck with it yourself unless you have an application specifically
tuned to it. Tuning it well is complex. We have learned that Oracle 10gR2 specifically has
enhancements that take advantage of CLM. But generally, CLM is not what we would
call the ‘practical stuff’ of system performance (the bread and butter of simple



performance management that addresses 95% of issues with 5% of the complexity). CLM
and reconfiguring interrupts to specific processors and other topics that we avoid
generally fall into what we call ‘internals stuff’. We’re not saying it’s bad to learn about
them if it applies to your situation, just don’t go overboard. At the end of this paper, we
have a section specific to Cell-based (NUMA) performance, which discusses briefly
Oracle and multiple SGAs and PSETS and stuff, BUT…it ain’t gonna be in ‘kernelese’ –
it will be more ‘Stephenism’! And we do not go into serious detail…just enough to keep
you informed and hopefully help you decide if you want to do detailed research on your
own to use these things for specific, performance related issues!

Confused yet? Hey, memory is cheap so buy lots.

Disk Setup

You may have planned for enough disk space to meet your needs, but also think about
how you’re going to distribute your data. In general, many smaller disks are better than
fewer bigger disks, as this gives you more flexibility to move things around to relieve I/O
bottlenecks. You should try to split your most heavily used logical volumes across several
different disks and I/O channels if possible. Of course, big storage arrays can be
virtualized and have their own management systems nearly independent from the server
side of things. Managing fancy storage networks is an art unto itself, and something we
do not touch on in this cookbook.

An old UNIX tip: when determining directory paths for applications, try to keep the
number of levels from the file system root to a minimum. Extremely deep directory trees
may impact performance by requiring more lookups to access files. Conversely, file
access can be slowed when you have too many files (multiple thousands) in a given
directory.

Swap Devices

You want to configure enough swap space to cover the largest virtual memory demand
your system is likely to hit (at least as much as the size of physical memory). The idea is
to configure lots of swap so that you don’t run into limits reserving virtual memory in
applications, without, in the end, actually using it (in other words, you want to have it
there but avoid paging to it). You avoid paging out to swap by having enough physical
memory so that you don’t get into a memory bottleneck.

For the disk partitions that you dedicate to swap, the best scenario is to divide the space
evenly among drives with equivalent performance (preferably on different
cards/controllers). For example, if you need 16GB of swap and you can dedicate four
4GB volumes of the same type hanging off four separate I/O cards, then you’re perfect. If
you only have differing volumes of different sizes available for swap, take at least two
that are of the same type and size that map to different physical disks, and make them the



highest priority (lowest number…0). Note that primary swap is set to priority 1 and
cannot be changed, which is why you need to use 0. This enables page interleaving,
meaning that paging requests will ‘round robin’ to them. You don’t want to page out to
swap at all, but if you do start paging then you want it to go fast.

You can configure other lower-priority swap devices to make up the difference. The ones
you had set at the highest priority are the ones that will be paged to first, and in most
cases the lower-priority swap areas will have their space ‘reserved’ but not ‘used,’ so
performance won’t be an issue with them. It’s OK for the lower-priority areas to be
slower and not interleaved. We’ll talk more about swap in the Disk and Memory
Bottlenecks sections below.

Pseudo swap is typically and by default enabled, which is no problem and needed if you
don’t have enough spare disk space reservable for swap. If you get into a situation where
your workloads’ swap reservation exceeds the total amount of disk swap available, this
leads to memory-locking pages as pseudo swap becomes more ‘used’. If you have plenty
of device swap configured, then enabling pseudo swap provides no specific benefit for
your system…it was invented so that those systems that had less swap configured than
physical memory would be able to use all of their memory.

Logical Volumes

Generally, your application/middleware vendor will have the best recommendations for
optimizing the disk layouts for their software. Database vendors used to recommend
bypassing the file system (using raw logical volumes) for best performance. With newer
disk technologies and software, performance on ‘cooked’ volumes is equivalent. In any
case, it’s a good idea to assign independent applications to unique volume groups
(physical disks) to reduce the chance of them impacting each other.

There’s a lot of LVM functionality built in to support High Availability. Options such as
LVM Mirroring (writing multiple times) and the LVM Mirror Write Cache are ‘anti-
performance’ in most cases. Sometimes for read-intensive workloads, mirroring can
improve performance because reads can be satisfied from the fastest disk in the mirror,
but in most cases you should think of LVM as a space management tool — it’s not built
for performance. Stephen tells customers “There comes a time when you have to decide
whether you want High Availability or Performance: Ya can’t have both, but you can
make your HA environment perform better.”

LVM Parallel scheduling policy is better than Serial/Sequential. LVM striping can help
with disk I/O-intensive workloads. You want to set up striping across disks that are
similar in size and speed. If you are going to use LVM striping, then make the stripe size
the same as the underlying file system block size. In our experience (over many years) the
block size should not be less than 64K. In fact, it should be quite a bit larger than 64KB
when you are using LVM striping on a volume mounted over a hardware-striped disk
array. Many large installations are experimenting with LVM striping on large disk arrays



such as XP and EMC. A general rule of thumb: use hardware (array) striping first, then
software (LVM) striping when necessary for performance or capacity reasons. Be careful
using LVM striping on disk arrays: you should understand the combined effect of
software over array striping in light of your expected workload. For example, LVM
striping many ways across an array, using a sub-megabyte block size will probably defeat
the sequential pre-fetch algorithms of the array.

Optimizing disk I/O is a science unto itself. Use of in-depth array-specific tools, Dynamic
Multi-Pathing, and Storage Area Management mechanisms are beyond the scope of this
cookbook.

File systems - VxFS

If you are using file systems (not raw disk access), then use VxFS (JFS) with 8 kilobyte
block size. We KNOW we said we would not talk about things like Oracle,
BUT…’corner cases’ (exceptions) would be like, oh --- redo and archive file systems.
Make ‘em 1K block size. Also, these guys should be DIRECT I/O. See Mark Ray’s view
on this topic in the paper on JFS Tuning and Common Misconfigured HP-UX Resources
(updated for 11.31) linked via our References section below.

For best performance, get the most recent HP OnlineJFS. Using it, you can better
manipulate specific mount options and adjust for performance (see man pages for
fsadm_vxfs and mount_vxfs). Some of the options below are available only with
OnlineJFS. AND: some of the options (in more current VxFS versions) can be modified
dynamically while the file system is mounted…read the man page.

In general, for VxFS file systems use these mount options:
delaylog, nodatainlog

For VxFS file systems with primarily random access read activity, like your typical
Oracle app, use:

mincache=direct, convosync=direct

“What???” The short version: When access is primarily random, any read-ahead I/O
performed by the buffer cache routines is ‘wasted’: logical read requests will invoke
routines that will look through buffer cache and not get hits. Then, performance
degradation results because a physical read to disk will be performed for nearly every
logical read request. When mincache=direct is used, it causes the routines to bypass the
OS file (buffer) cache: I/O goes directly from disk to the process’s own buffer space,
eliminating the ‘middle’ steps of searching the buffer cache and moving data from the
disk to the buffer cache, and from there into the process memory. If mincache=direct is
used when read patterns are very sequential, you will get hammered in the performance
arena (that’s bad), because very sequential reading would take big advantage of read
ahead in the buffer cache, making logical I/O wait less often for physical reads. You want
much more logical than physical reading for performance (when access patterns are
sequential). Likewise, most write-intensive apps benefit from the OS file cache. Doug



accidently set mincache=direct on a filesystem dedicated to a write-intensive Postgres
database, and performance dropped 50 times (not 50%, 50x!). BUT WAIT: we have seen
an improvement in performance with direct I/O (it happened to be a backup) when the
application was routinely requesting a large amount of data. The short version: the largest
physical I/O that JFS will do is 64K. If a process was consistently reading/requesting
1MB… JFS would break it up into multiple 64K physical reads. In this specific case,
using mincache=direct caused much fewer physical I/Os… it just went out and got a
1MB chunk of data at a time.

Let’s talk about datainlog and nodatainlog a little more. If you take a look at the HP
VERITAS File System Administrator’s Guide in the Performance and Tuning section
under the discussion of nodatainlog, you will see a statement that reads “A
nodatainlog mode file system should be approximately 50 percent slower than a
standard mode VxFS file system for synchronous writes. Other operations are not
affected”. We completely disagree with this statement (by now you should know that we
really check these things out…many different ways). When you use datainlog it kinda
sorta simulates synchronous writes. It allows smallish (8K or less) writes to be written in
the intent log. The data and the inode are written asynchronously later. You only use the
intent log in case there is a system crash. Using datainlog will actually cause more I/O.
Large synchronous I/O is not affected. Reads are not affected. Asynchronous I/O is not
affected. Only small, synchronous writes are placed in the intent log.

The intent log still has to get flushed to the disk synchronously…there is the opinion that
this will be faster than writing the data and the inode asynchronously. This is not true
synchronous I/O…and does not maintain the data integrity like true synchronous I/O.
Check this scenario out: the flush of the intent log succeeds, so the write() returns to the
application. Later, when the data is actually written, an I/O error occurs. Since the
application is no longer in write, it can’t report the error. The syslog will have recorded
vx_dataioerr, but the application has no clue that the write failed. There is the possibility
that a subsequent successful read of the same data would return stale data. We still feel
that nodatainlog is way much more betta than datainlog.

Let’s also talk a little convosync=direct. Stephen has seen a couple of customer
systems that have suffered when this option has been used. It does make for more direct
I/O (more physical than logical I/O). Performance improvement has been seen when this
option has been removed. Afterwards, there appears to be less physical I/O taking place.
A side effect of this may be a lower read cache hit rate… the convosync=direct option
acts as if the VX_DIRECT caching option is in effect (read vxfsio(7)) and buffer cache
was not being used. After the option is removed, you are using buffer cache more and
probably experiencing a more worser (lower) hit rate. Remember: that is a couple of
customers…most will not feel negative performance with convosync=direct.

Here is an example of the exception to the rule: We have seen special cases such as a
large, 32-bit Oracle application in which the amount of shared memory limited the size of
the SGA, thus limiting the amount of memory allocated to the buffer pool space; and



(more important) Oracle was found to be reading sequentially 68 percent of the time!
When the mincache=direct option was removed, (and the buffer cache enlarged) the
number of physical I/Os was greatly reduced which increased performance substantially.
Remember: this was a specific, unique, pathological case; often experimentation and/or
research is required to know if your system/application will behave this way.

On /tmp and other ‘scratch’ file systems where data integrity in the unlikely event of a
system failure is not critical, use the following mount options:

tmplog OR nolog, mincache=tmpcache, convosync=delay

Nolog acts just like tmplog. Stephen can explain, if you buy him a beer and give him an
hour. If you buy him TWO beers you will have to give him TWO hours.

Generally, for file system options the more logging and recoverability you build in, the
less performance you have. Generally, consider the cost of data loss versus the cost of
additional hardware to support better performance. You should have a decent
backup/recovery strategy in place regardless, and UPS to avoid downtime due to power
outages.

IMPORTANT NOTE: There is almost always a JFS ‘mega-patch’ available. Keep
current on JFS (VxFS) versions and patch levels for best performance! There are many
enhancements, dynamic tunables, etc. READ UP ON ‘EM! AND, read Mark Ray’s
papers!

OK one more trick to discuss... on unix there are ways to mount tmp and other ‘scratch’
filesystems in memory-only. On HP-UX this is called the “Memory File System”, and
there are some references to it on the web under docs.hp.com (search for memfs). It is a
mount option and there are various considerations you can read about. Apparently you
need a patch on 11.23 to be able to use it. Apparently this works better in 11.31. Bottom
line: we have not seen this used in the customer base and do not recommend it. If you
have ample memory and want to try it, then let us know how it goes.

Network Setup

Every networking situation is unique, and although networking can be the most important
performance factor in today’s distributed application environments, there is little
available at the system level to tune networking, at least via SAM. A network
performance guru we know says that he typically asks people to get a copy of netperf /
ttcp (for transport layers) or iozone (for NFS) and run those benchmark tests to measure
the capabilities of their links and if those tests indicate a problem then he starts drilling
down with tools like lanadmin, network traces, switch statistics, etc. You can dig up
more information about different tools and net tuning in general from the HP docs
website or the ‘briefs’ directory in the HP Networking tools contrib archive mentioned in
the References section at the end of this paper.



Some general tips:
- Make sure your servers are running on at least as fast a network as their clients and

configured properly.
- Record and periodically examine the network topology and performance, as things

always tend to degrade over time. Invest in Network Node Manager or other network
monitoring tools.

- When setting up an NFS environment, use NFS V3/V4 and read Dave Olker’s book
on “Optimizing NFS Performance” (which is out of print but you can find it!) or
search docs.hp.com for whitepapers matching “Managing NFS Performance”.

- For both clients and servers, make sure you keep current on the latest NFS,
networking, and performance-oriented kernel patches!

Kernel Tunables

Stephen has an old story about some SAM templates (obsolete now) that had a bad
timeslice tunable value in them. The moral is never to blindly accept anybody’s
recommendations about kernel tunables (sometimes even HP’s recommendations — hey
wait who do we work for again??!?). Stephen tends to get passionate (not in a good way)
about people who come up with simple-minded ‘one size fits all’ guidelines for setting up
configurable kernel parameters. If you manage thousands of systems with similar loads,
then by all means come up with settings that work for you, and propagate them. But if
you can take the time to tune a kernel specific to the load you expect on a given system,
then Stephen says: “Do that”.

Also note that some application vendors have guidelines for configuring tunables. It is
best to take their recommendations, especially if they won’t support you if you don’t!
EVEN if you find out that you ain’t even usin’ SPIT in comparison to what they told ya to
configure. They may not support you unless you do what they say!

What follows is a brief rundown of our general recommendations for the tunables that are
most important to performance on 11.23 and 11.31. For background as to the definitions
of these parameters, their ranges, and additional information, look at the SAM utility’s
online help. Compared to the old days, many of the default 11.23 and 11.31 tunable
settings are OK. Over time, tunables control a smaller proportion of overall memory, and
more tables become dynamic, which also helps. Due to 11.31 and this word’s
‘smattering’ all over all documentation…we might just use it here for both 11.23 and
‘behind’ (and 11.31). That word would be DEPRECATED! Why can’t they just say “we
ain’t gonna use it anymore”? In any case, what follows are the ones we still worry about:

bufpages

This was ‘deprecated’, along with nbuf, in 11.31. In other words, don’t worry about it on
11.31. Glance still shows a teensy bit for buffer cache but it’s no longer a concern: instead
worry about the file cache. On 11.23, you can use this to set the number of pages in a



fixed-size file system buffer cache. If you set bufpages, then make sure nbuf is zero. If
bufpages or nbuf are non-zero, then the values of dbc_min_pct and dbc_max_pct are
ignored. In order to get a 1GB (one gigabyte) fixed buffer cache, which is our
recommendation for 11.23 systems with OVER FOUR GB of memory, set bufpages to
262144. For smaller systems or any system on 11.0 or 11.11, we recommend only a
400MB buffer cache (set bufpages to 102400). For big file servers such as NFS, ftp, or
web servers; you should increase the buffer cache size so long as you don’t cause memory
pressure. If you are more comfortable with setting dbc_min_pct and dbc_max_pct

instead of bufpages, then set dbc_max_pct to a value equivalent to 1GB. We discuss
buffer cache tuning in conjunction with the Disk Bottlenecks section below.

dbc_max_pct

This is another tunable relevant only to 11.23 (not in 11.31). It determines the percentage
of main memory to which the dynamic file system buffer cache is allowed to grow (when
nbuf and bufpages are not set). The default is 50 percent of memory, but this is major
overkill in most cases. With a huge buffer cache, you’re more likely to get into a situation
where free memory is low and you’ll need to pageout or shrink the buffer cache in order
to meet memory demands for active processes. You do not want to get into that situation.
If you want to use a dynamic buffer cache, start with dbc_max_pct at a value equivalent
to the recommendation above (for example, on a 11.23 server with 20GB of memory, set
dbc_max_pct to 5 to ensure a 1GB limit). Set dbc_min_pct to the same value or
something smaller (it will not affect performance as long as you avoid memory pressure
and page outs). We have a subsection below delving more into Buffer Cache issues.

On 11.31, the buffer cache is no longer used for normal file data pages. If you are on
11.31 then don’t worry about sizing the buffer cache, instead consider the Unified File
Cache settings filecache*, mentioned below.

NOTE: the use of a large file or buffer cache no longer has performance degradation
implications (it has gotten “mo’ betta” with each release). If you have ample free memory
and you want a large buffer cache – YO, be our guest! Have at it! Stephen has has seen
customers (on 11.23) that the more buffer cache he gave ‘em…the better the application
performed. It happened with databases that did BOTH: reading a LOT of sequential stuff
from a lot of file systems, and then writing (and reading) to raw volumes. One of those
special cases, but a good example! Multi-gigabyte file / buffer caches are more common
these days.

default_disk_ir

This setting tells real disk devices on the system to enable immediate reporting (no wait
on disk I/O completions). This is equivalent to doing a scsictl –m ir=1 on every disk
device. It has NO effect on complex storage devices that are virtualized and have their
own cache mechanisms (like XP), but most systems have some ‘regular old disks’ in
them. The default is 0, but set this to 1 as a rule. This recommendation may be a ‘9.5 on
your sphincter scale,’ but this is an old perception left over from when systems crashed
regularly and before data recovery mechanisms were standard. There is no downside that
we know of to having this set to 1 (no impact on data integrity!).



filecache_max and filecache_min

Relevant only to 11.31 (and later!), these are the configuration limits of the dynamic
Unified File Cache, which (almost entirely) replaces the function of the Buffer Cache.
The goal when sizing the is still the same: to avoid memory pressure. You should
definitely read through the long-winded man-page: man 5 filecache_max, and also take
a peek at the UFC section towards the end of this paper. Bottom line: the configuration of
the UFC defaults to be restricted to between 5% and 50% of physical memory. If you see
any sign of a memory bottleneck (discussed below) or you are ‘tight’ on free memory,
you will most likely want to tune filecache_max ‘down’ (to a lower percentage). As
was the case with the Buffer Cache in 11.23, having a large UFC, as long as you also
have ample free memory, is not a problem.

max_thread_proc, maxuprc, maxfiles, maxfiles_lim, maxdsiz, maxssiz,
maxdsiz_64, and friends

There are a bunch of tunables that configure the maximum amount of something. These
limits used to be more important because ‘butthead’ applications that went crazy doing
dumb things were more common in the past. These days, you’re more likely to get
annoyed by hitting a limit when you don’t want to (because it was set lower than your
production workload needed), so we generally tell you to bump them up from the defaults
if you suspect the default may be too low. Or, unless told otherwise by your more
knowledgeable software vendor. If you know that nobody is going to run any ‘rogue’
program, say, that mallocs memory in a loop until it aborts, then bump the maxdsiz

parameters to their maximum!

The old maxusers parameter is gone, thankfully! Doug has overheard Stephen say that
tunable formulas generally suck.

nfile

The maximum number of file opens ‘concurrently at the same time’ (that is, not the
number of open files but the number of concurrent open()s) on the system. The default is
normally fine. Bump nfile up if you see high File Table utilization (>80 percent) in
Glance (System Tables Report) or get “File table overflow” program errors. Use a similar
approach for nflocks (max file locks). If you are configuring a big file system server
then you’re more likely to want to bump up these limits. We have found that most
customers do not realize that multiple locks can be held on a single file…by one process
or multiple processes.

ninode

This sets the inode cache size for HFS file systems. The VxFS cache is configurable
separately (see vx_ninode below). Don’t worry about it.

nkthread

The maximum number of kernel threads allowed on the system. The default is fine for
most workloads. If you know that you have a multi-threaded workload, then you may
want to bump this higher.



nproc

This is heavily dependent on your expected workload, but for most systems, the default is
fine. If you know better, set it higher. Don’t blindly over configure this by setting it to
30000 when you’ll have only 400 processes in your workload, as this has secondary
effects, like increasing the size of the midaemon’s shared memory segment (used by
Glance to keep track of process data). Process table utilization is tracked in Glance’s
System Tables Report: check the utilization periodically and plan to bump up nproc

when you see that it reaches over 80 percent utilization during normal processing.

shmmax

We have seen 64bit Oracle break up it’s SGA shared memory allocations (ipcs –ma)
when this tunable is configured too low. This can hurt performance: if you have the
physical memory available, then let the DB allocate as much as it needs in one chunk.
Bump the segment limit up to its max (unless you fear ‘rogue’ applications causing a
problem by hogging shared memory, which typically ain’t nuthin’ to worry about). The
default is 1GB… a little too low for big servers.

swapmem_on

Pseudo swap is used to increase the amount of reservable virtual memory. This is only
useful when you can’t configure as much device swap as you need, but its always on in
11.31. For example, say you have more physical memory installed than you have disks
available to use as swap: in this case, on 11.23, if pseudo swap is not turned on, you’ll
never be able to allocate all the physical memory you have. There is no effect of pseudo
swap on performance, unless your system is trying to reserve more swap than you have
device swap available to cover. So: pseudo swap can slow down performance only when
it ‘kicks in’. When your total reserved swap space increases beyond the amount available
for device swap, if you do not have pseudo swap enabled, programs will fail (“out of
memory”). If your total swap reservation exceeds available device swap and you do have
pseudo swap enabled, then programs will not fail, but the kernel will start locking their
pages into physical memory. If this happens, the number for ‘Used’ memory swap shown
in glance will go up quickly. We realize this is a real head-spinner. Rule of thumb: if you
have enough device swap available to cover the amount you will reserve, then you don’t
need to worry about how this parameter is set. If you need to set it because you’re short
on device swap, then do it. The ‘values’ used for pseudo swap is 100% of memory in
11.23 and above, and it’s always turned on in 11.31 (not configurable). Bottom line is to
try and configure enough swap disk to cover your expected workload.

timeslice

Leave this set at 10. If this is set to 1, excessive context switching overhead will usually
result. The system would spend, oh, 10 times what it normally does simply handling
timeslice interrupts. It can possibly also cause lock contention issues if set too low.
We’ve never seen a production system benefit from having timeslice set less than 10.
Forget the “It Depends” on this one: leave it set at 10! Stephen STILL finds a system here
and there that has timeslice incorrectly set to ‘1’!

vx_ninode



The JFS inode cache is potentially a large chunk of system memory. The limit of the table
defaults high if you have over 1GB memory (for example, 8GB physical memory
calculates a quarter million maximum VxFS inode entries). But: the table is dynamic by
default so it won’t use memory without substantial file activity. You can monitor it with
the command: vxfsstat /. If you notice that the vxfsd system process is using
excessive CPU, then it might be wasting resources by trying to shrink the cache. If you
see this, then consider making the cache a specific size and static. Note that you can’t set
vx_ninode to a value less than nfile. For details, refer to lengthy JFS Inode Cache
discussion in the “Commonly Misconfigured HP-UX Resources” whitepaper that we
point to in our References section at the end of the cookbook. As a general rule, don’t
muck with it. If you have a file server that is simultaneously accessing a tremendous
number of individual files, and you see the error: vx_iget - inode table overflow

then bump this parameter higher. Most say “YO, it’s dynamic…what do I care”? GEE…
do you know anyone that might run a find command from root? How fast DO YOU
THINK this table will grow to its maximum ? If you are on an older OS pre-11.23: set
it to 20000.

What’s Yer Problem?

OK, so let’s talk about real life now, which begins after you’ve been thrust into a
situation on a critical server where some (or all) the applications are running slow and
nobody has any idea what’s wrong but you’re supposed to fix it. Now…

If you’re good, really good, then you’ve been collecting some historical information on
the system you manage and you have a decent understanding of how the system looks
when it’s behaving normally. Some people just leave glance running occasionally to see
what resources the system is usually consuming (CPU, memory, disk, network, and
kernel tables). For 24x7 logging and alarming, the Performance Agent (PA) works good.
In addition to local export, you can view the PA metrics remotely with the Performance
Manager, Operations Manager or other tools that used to be marketed under the term
“OpenView”. Also, the HP Capacity Adviser tool can work off the metrics collected by
PA. Whatever tools you use, it’s important to understand the baseline, because then when
things go awry you can see right off what resource is out of whack (awry and out of
whack being technical terms). If you have been bad, very bad, or unlucky, then you have
no idea what’s normal and you’ll need to start from scratch: chase the most likely
bottlenecks that show up in the tools and hope you’re on the right track. Start from the
global level (system-wide view) and then drill down to get more detail on specific
resources that are busy.

It’s very helpful to understand the structure of the applications that are running and how
they use resources. For example, if you know your system is a dedicated database server
and that all the critical databases are on raw logical volumes, then you will not waste your
time by trying to tune file system options and buffer cache or UFC efficiency: they would



not be relevant when all the disk I/O is in raw mode. If you’ve taken the time to bucket all
the important processes into applications via Glance and the Performance Agent’s parm
file, then you can compare relative application resource usage and (hopefully) jump right
to the set of processes involved in the problem. There are typically many active processes
on busy servers, so you want to understand enough about the performance problem to
know which processes are the ones you need to focus on.

If an application or process is actually failing to run or it is aborting after some amount of
time, then you may not have a performance problem; instead the failure probably has
something to do with a limit being exceeded. Common problems can include
underconfigured kernel parameters, but more often application parameters (like java
settings), or swap space. You can usually look these errors up in the HP-UX or
application documentation and it will point you to what limit to bump up. Glance’s
System Tables report can be helpful. Also, make sure you’ve kept the system updated
with the most recent patch bundles relevant to performance and the subsystems your
workload uses (like networking!). If nothing is actually failing, but things are just running
slowly, then the real fun begins!

Resource Bottlenecks

The bottom line on system resources is that you would actually like to see them fully
utilized. After all, you paid for them! High utilization is not the same as a bottleneck. A
bottleneck is a symptom of a resource that is fully utilized and has a queue of processes
or threads waiting for it. The processes stuck waiting will run slower than they would if
there were no queue on the bottlenecked resource.

Generic Bottleneck Recipe Ingredients:
- A resource is in use, and
- Processes or threads are spending time waiting on that resource.

Starting with the next section, we’ll start drilling down into specific bottleneck types. Of
course, we’ll not be able to categorize every potential bottleneck, but will try to cover the
most common ones. At the beginning of each type of bottleneck, we’ll start with the few
primary indicators we look at to categorize problems ourselves, then drill down into
subcategories as needed. You can quickly scan the ‘ingredients’ lists to see which one
matches what you have. As they say on cable TV (so it must be true): all great cooks start
with the right ingredients! Unless you are Stephen (who is a GREAT cook) and, as usual,
has his own unique set of ‘right ingredients’.

If you’d like to understand more about what makes a bottleneck, consider the example of
a disk backup. A process involved in the backup application will be reading from disk
and writing to a backup device (another disk, a tape device, or over the network). This
process cannot back up data infinitely fast. It will be limited by some resource. That
slowest resource in the data flow could be the disk that it’s backing up (indicated by the



source disk being nearly 100 percent busy). Or, that slowest resource could be the output
device for the backup. The backup could also be limited by the CPU (perhaps in a
compression algorithm, indicated by that process using 100 percent CPU). You could
make the backup go faster if you added some speed to the specific resource it is
constrained by, but if the backup completes in the timeframe you need it to and it doesn’t
impact any other processing, then there is no problem! Making it run faster is not the best
use of your time. Remember: a disk (or address) being 100% busy does not necessarily
indicate a bottleneck. Coupled with the length of the queue (and maybe the average
service time)…it might indicate a problem.

Now, if your backup is not finishing before your server starts to get busy as the workday
begins in the morning, you may find that applications running ‘concurrently at the same
time’ with it are dog-slow. This would be because your applications are contending for
the same resource that the backup has in use. Now you have a true performance
bottleneck! One of the most common performance problem scenarios is a backup
running too long and interfering with daily processing. Often the easiest way to ‘solve’
that problem is to tune which specific files and disks are being backed up, to make sure
you balance the need for data integrity with performance.

If you are starting your performance analysis knowing what application and processes are
running slower than they should, then look at those specific processes and see what
they’re waiting on most of the time. This is not always as easy as it sounds, because
UNIX is not typically very good at telling what things are waiting for. Glance and
Performance Agent (PA is also known as MeasureWare) have the concept of Blocked
States (which are also known as wait reasons). You can select a process in Glance, and
then get into the Wait States screen for it to see what percentage of time that it’s waiting
for different resources. Unfortunately, these don’t always point you directly to the source
of the problem. Some of them, such as Priority, are easier: if a process is blocked on
Priority that means that it was stuck waiting for CPU time as a higher-priority process
ran. Some other wait reasons, such as Streams (Streams subsystem I/O) are trickier. If a
process is spending most of its time blocked on Streams, then it may be waiting because a
network is bottlenecked, but (more likely) it is idle reading from a Stream waiting until
something writes to it. User login shells sit in Stream wait when waiting for terminal
input.

Metrics

We’re focusing on performance, not performance metrics. We’ll need to discuss some of
the various metrics as we drill down, but we don’t want to get into the gory details of the
exact metric definitions or how they are derived. If you have Glance on a system, run
xglance (same as gpm) and click on the Help -> User’s Guide menu selection, then in the
help window click on the Performance Metrics section to see all the definitions.
Alternatively, in xglance use the Configure -> Choose Metrics selection from one of the
Report windows to see the list of all available metrics in that area, and you can right-click
to conjure up the metric definitions. If you have PA on your system, a place to go for the



definitions is /opt/perf/paperdocs/ovpa/C/methp*.txt. A subset of the
performance metrics are shown in character-mode glance and logged by PA. If you need
more info on tools and metrics, refer to the web page pointers in the References section
below.

We use the word “process” a lot, but in HP-UX it is the actually the thread which is the
individually schedulable, runnable entity, and a process can be multi-threaded. A single
process with 10 threads can fully load 10 processors (each thread using 100 percent CPU,
the parent process using ‘1000 percent’ CPU – note process metrics do not take the
number of CPUs into account). This is similar to 10 separate single-threaded processes
each using 100 percent CPU.

One thing to remember about metrics: they ain’t perfect. Any number given to you by any
performance tool with 8 digits of precision is almost certainly wrong! The reasons behind
this have a lot to do with statistical sampling, normalization, reduction and
synchronization but the important takeaway is: take things with a grain of salt and don’t
assume infallibility in any tool or metric. Taken together, and compared to normal
activity, metrics are typically relevant, useful, and accurate BUT there is always going to
be some “squishiness” to the numbers. For example, see the note down in the Memory
Bottlenecks section below discussing “gotchas” in that area. Or ask Stephen why his least
favorite number in the world is 327.67.

CPU Bottlenecks

CPU Bottleneck Recipe Ingredients:
- Consistent high global CPU utilization (GBL_CPU_TOTAL_UTIL > 90%), and
- Significant Run Queue (Load Average) or processes consistently blocked on

Priority (GBL_RUN_QUEUE > 3 or GBL_PRI_QUEUE > 3).

- Important Processes often showing as blocked on Priority (waiting for CPU)
(PROC_STOP_REASON = PRI).

It’s easy to tell if you have a CPU bottleneck. The overall CPU utilization (averaged over
all processors) will be near 100 percent and some processes are always waiting to run. It
is not always easy to find out why the CPU bottleneck is happening. Here’s where it is
important to have that baseline knowledge of what the system looks like when it’s
running normally, so you’ll have an easier time spotting the processes and applications
that are contributing to a problem. Stephen likes to call these the ‘offending’ process(es).

The priority queue metric (derived from process-blocked states), shows the average
number of processes waiting for any CPU (that, is, blocked on PRIority). It doesn’t matter
how many processors there are on the system. Stephen likes to use this more than the Run
Queue. The Run Queue is an average of how many processes were ‘runnable’ on each
processor. This works out to be similar to or the same as the Load Average metric,



displayed by the top or uptime commands. Different performance tools use either the
running average or the instantaneous value.

We should also mention that you may see other rules of thumb that have been published
or presented elsewhere. Feel free to let us know if you find alternatives that work better
for you, but our guidelines here have held up well for use by many admins for many
years.

To diagnose CPU bottlenecks, look first to see whether most of the total CPU time is
spent in System (kernel) mode or User (outside kernel) mode. Jump to the subsection
below that most closely matches your situation.

User CPU Bottlenecks

User CPU Bottleneck Recipe Ingredients:
- CPU bottleneck symptoms from above, and
- Most of the time spent in user code (GBL_CPU_USER_MODE_UTIL > 50%).

If your system is spending most of its time executing outside the kernel, then that’s
typically a good thing. You just may want to make sure you are executing the ‘right’ user
code. Look at the processes using most of the CPU (sort the Glance process list by
PROC_CPU_TOTAL_UTIL) and see if the processes getting most of the time are the ones
you’d want to get most of the time. In Glance, you can select a process and drill down to
see more detailed information. If a process is spending all of its time in user mode,
making no system calls (and doing no I/O), then it might be stuck in a spin. User-mode
processes that are causing I/O may be doing memory-mapped I/O. If shell processes (sh,
ksh, or yuck-csh) are hogging the CPU, check the user to make sure they aren’t stuck
(sometimes network disconnects can lead to stale shells stuck in loops).

If the wrong applications are getting all the CPU time at the expense of the applications
you want, this will be shown as important processes being blocked on Priority a lot. There
are several tools that you can use to dive deeper into detailed HP-UX application
performance, including “Caliper” for Itanium. For Oracle enviroments, their Statspack
has useful information: your DBA is your friend!

The HP PRM product (Process Resource Manager) and Global Work Load Manager
(gWLM) are worth checking into to provide CPU control per application. Some
workloads may benefit by logical separation that you can accomplish via one of HP’s
Virtual Server Environments (nPars, vPars, or HPVM). If you are engaged in
consolidation activities, check out the HP Capacity Adviser product as well. In the race to
keep up with changing systems, sometimes the one with the best tools wins!

A short-term remedy may be judicious use of the renice command, which you can also
invoke via Glance on a selected process. Increasing the nice value will decrease it’s



processing priority relative to other timeshare processes. There are many scheduling
‘tricks’ that processes can invoke, including POSIX schedulers, although use of these
special features are not common. Oracle actually recommends disabling user timeshare
priority degrading via hpux_sched_noage (sets kernel parameter SCHED_NOAGE). It is a
long story that Stephen talks about in his 2-day seminars. A simple (right) explanation
is that many people discuss this using the term ‘priority inversion’. When you use
SCHED_NOAGE, it tells the kernel NOT to adjust/degrade the priority of a process/thread.
The most bestest priority that can be set using the rtsched command or system call (with
the SCHED_NOAGE policy) is 178 – which is the most bestest USER priority in the HP-UX
timeshare range.

The easiest way to solve a CPU bottleneck may simply be to buy more processing power.
In general, more better faster CPUs will make things run more better faster. Another
approach is application optimization, and various programming tools can be useful if you
have source code access to your applications. The HP Developer and Solution Partner
portal mentioned in the References section below can be a good place to search for tools.

System CPU Bottlenecks

System CPU Bottleneck Recipe Ingredients:
- CPU bottleneck symptoms from above, and
- Most of the time spent in the kernel (GBL_CPU_SYS_MODE_UTIL > 50%).

If you are spending most of your CPU time in System mode, then you’ll want to break
that down further and see what activity is causing processes to spend so much time in the
kernel. First, check to see if most of the overhead is due to context switching. This is the
kernel running different processes all the time. If you’re doing a lot of context switching,
then you’ll want to figure out why, because this is not productive work. This is a whole
topic in it itself, so jump down to the next section on Context Switching Bottlenecks.

If the system CPU isn’t caused by context switching, then see if the metric
GBL_CPU_INTERRUPT_UTIL is > 30 percent. If so, you likely have some kind of I/O
bottleneck instead of a CPU bottleneck (that is, your CPU bottleneck is being caused by
an I/O bottleneck), or just maybe you have a flaky I/O card. Switch gears and address the
I/O issue first (Disk or Networking bottleneck). Memory bottlenecks can also come
disguised as System CPU bottlenecks: if memory is fully utilized and you see paging,
look at the memory issue first.

Some people have expressed a concern to us over vPars (virtual partitions) and allocating
bound versus unbound processors. Apparently I/O interrupts are restricted to bound
CPUs. We have not seen this be an issue in the real world… in other words, don’t worry
about not allocating ‘enough’ CPUs bound unless you have a shiptload of I/O happening
and you see high Interrupt-CPU levels, as above, on your bound processors. Only in that



case should you start worrying about ‘needing’ to make more unbound (floater) CPUs
into bound CPUs.

If you aren’t burdened by high System CPU caused by Context Switching or Interrupts,
then we can assume at this point that most of your kernel time is spent in system calls
(GBL_CPU_SYSCALL_UTIL >30%). Now it’s time to try to see which specific system calls
are going on. It’s best if you can use Glance on the system at the time the problem is
active. If you can do this, count your lucky stars and skip to the next paragraph. If you are
stuck with looking at historical data or using other tools, it won’t include specific system
call breakdowns, so you’ll need to try to work from other metrics. Try looking at process
data during the bad time and see which processes are the worst (highest
PROC_CPU_SYSCALL_UTIL) and look at their other metrics or known behavior to see if
you can determine the reason why that process would be doing excessive system calls.

If you can catch the problem live, you can use Glance to drill down further. We like to
use xglance (gpm) for this because of it’s more flexible sorting and metric selection. Go
into Reports->System Info->System Calls, and in this window configure the sort field to
be the syscall rate. The most-often called system call will then be listed first. You can also
sort by CPU time to see which system calls are taking the most CPU time, as some
system calls are significantly more expensive than others are. In xglance’s Process List
report, you can choose the PROC_CPU_SYS_MODE_UTIL metric to sort on and the processes
spending the most time in the kernel will be listed first. Select a process from the list and
pull down the Process System Calls report and (after a few update intervals) you’ll see the
system calls that process is using. Keep in mind that not all system calls map directly to
libc interfaces, so you may need to be a little kernel-savvy to translate system call info
back into program source code. Once you find out which processes are involved in the
bottleneck, and what they are doing, the tricky part is determining why. We leave this as
an exercise for the user!

Common programming mistakes such as repetitive gettimeofday(), sched_yield(),
or select() calls (we’ve seen thousands per second in some poorly designed programs)
may be at the root of a System CPU bottleneck. Another common cause is excessive
stat-type file system syscalls (the find command is good at generating these, as well as
shells with excessive search PATH variables). Once we traced the root cause of a
bottleneck back to a program that was opening and closing /dev/null in a loop!

We once saw a case where a system CPU bottleneck was found to be caused by programs
communicating with each-other using very small reads and writes. This type of activity
has a side effect of generating a lot of kernel syscall traces which, in turn, causes the
midaemon process (which is used by Glance and PA) to use a lot of CPU. So: if you ever
see the midaemon process using a lot of CPU on your system, then look for processes
other than the midaemon using excessive system CPU (as above, sort the glance process
list by the PROC_CPU_SYS_MODE_UTIL metric). Particularly inefficient applications make
very short but incessant system calls.



On busy and large multiprocessor systems, system CPU bottlenecks can be the result of
contention over internal kernel resources such as data structures that can only be accessed
on behalf of one CPU at a time. You may have heard of spinlocks, which is what happens
when processors must sit and spin waiting for a lock to be released on things like virtual
memory or I/O control structures. This type of situation results in very long-running
System Calls. This shows up in the tools as System CPU time, and it’s hard to distinguish
from other issues. Typically, this is OK because there’s not much from the system admin
perspective that you can do about it anyway. Spinlocks are an efficient way to keep
processors from tromping over critical kernel structures, but some workloads (like those
doing a lot of file manipulations) tend to have more contention. If programs never make
system calls, then they won’t be slowed down by the kernel. Unfortunately, this is not
always possible!

Here’s a plug for a contrib system trace utility put together by a very good friend of ours
at HP. It is called tusc, and it’s very useful for tracing activity and system calls made by
specific processes: very useful for application developers. It’s available via the HP
Networking Contrib Archive (see References section at the end of this paper) under the
tools directory. We would be remiss if we did not say that some applications have been
written that perform an enormous amount of system calls and there is not much that we
can do about it, especially if the application is a third-party application. We have also
seen developers ‘choose’ the wrong calls for performance. It’s a complex topic that
Stephen is prepared to go into at length over a beer.

Context Switching Bottlenecks

Context Switching System CPU Bottleneck Recipe Ingredients:
- System CPU bottleneck symptoms from above, and
- Lots of CPU time spent Switching (GBL_CPU_CSWITCH_UTIL > 30%).

A context switch can occur for one of two reasons: either the currently executing process
puts itself to sleep (by touching virtual memory that is not resident, or by making a library
or system call that waits), or the currently executing process is forced off the CPU
because the OS has determined that it needs to schedule a different (higher priority)
process. When a system spends a lot of time context switching (which is essentially
overhead), useful processing can be bogged down.

One common cause of extreme context switching is workloads that have a very high fork
rate. In other words, processes are being created (and presumably completed) very often.
Frequent logins are a great source of high fork rates, as shell login profiles often run many
short-lived processes. Keeping user shell rc files clean can avoid a lot of this overhead.
Also, we have seen high fork/exit rates caused by ‘agentless’ system monitors that
incessantly login from a remote location to run commands. Since faster systems can
handle higher fork rates, it’s hard to set a rule of thumb, but you can monitor the metric
GBL_STARTED_PROC_RATE over time and watch for values over 50, or periodic spikes.



Trying to track down who’s forking too much is easy with xglance; just use Choose
Metrics to get PROC_FORK into the Process List report, and sort on it. Another good sort
column for this type of problem is PROC_CPU_CSWITCH_UTIL.

If you don’t have a high process creation rate, then high context switch rates are probably
an issue with the application. Semaphore contention is a common cause of context
switches, as processes repeatedly block on semaphore waits. There’s typically very little
you can do to change the behavior of the application itself, but there may be some
external controls that you can change to make it more efficient. Often by lengthening the
amount of time each process can hold a CPU, you can decrease scheduler thrashing.
Make sure the kernel timeslice parameter is at least at the default of 10 (10 10-
millisecond clock ticks is .1 second), and consider doubling it if you can’t reduce context
switch utilization by changing the workload.

Memory Bottlenecks

Memory Bottleneck Recipe Ingredients:
- High physical memory utilization (GBL_MEM_UTIL > 95%), and
- Significant pageout rate (GBL_MEM_PAGEOUT_RATE > 10), or
- Any ‘true’ deactivations (GBL_MEM_SWAPOUT_RATE > 0), or
- vhand process consistently active (vhand’s PROC_CPU_TOTAL_UTIL > 10%

or GBL_MEM_PG_SCAN_RATE > 1000).

- Processes or threads blocked on virtual memory (GBL_MEM_QUEUE > 0 or
PROC_STOP_REASON = VM).

It is a good thing to remember not to forget about your memory.

When a program touches a virtual address on a page that is not in physical memory, the
result will be a ‘page in.’ When HP-UX needs to make room in physical memory, or
when a memory-mapped file is posted, the result will be a ‘page out.’ What used to be
called swaps, where whole working sets were transferred from memory to a swap area,
has now been replaced by deactivations, where pages belonging to a selected
(unfortunate) process are all marked to be paged out. The offending process is taken off
the run queue and put on a deactivation queue, so it gets no CPU time and cannot
reference any of its pages: thus they are often quickly paged out. This does not mean they
are necessarily paged out, though! We could go into a lot of detail on this subject, but
we’ll spare you.

Here’s what you need to know: Ignore pageins. They just happen. When memory
utilization is high, watch out for pageouts, because they are often (but not always,
especially in 11.31!) a memory bottleneck indicator. Don’t worry about pageouts that
happen when memory utilization is not high, because to a certain extent they are normal.
If memory utilization is less than 95% and you see pageouts, they are most likely due to
memory-mapped file writes. This is much more common in the 11.31 because of the
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Unified File Cache. The UFC has its own dedicated section at the end of this paper. If
memory utilization is high (>95%), and you see pageouts along with any deactivations or
a higher-than-normal page scan rates, then you may really have a problem. If memory
utilization is less than 90 percent, then don’t worry…be happy.

OK, so let’s say we got you worried. Maybe you’re seeing high memory utilization and
pageouts or the page scan rate jumps. Maybe it gets worse over time until the system is
rebooted (this is classic: “we reboot once a week just because”). A common cause of
memory bottlenecks is a memory ‘leak’ in an application. Memory leaks happen when
processes allocate (virtual) memory and forget to release it.

If you have done a good job organizing your PA parm file applications, then comparing
their virtual memory trends (APP_MEM_VIRT) over time can be very helpful to see if any
applications have memory leaks. Using Performance Manager, you can draw a graph of
all applications using the APP_MEM_VIRT metric to see this graphically. If you don’t have
applications organized well, you can use Glance and sort on PROC_MEM_VIRT to see the
processes using most memory. In Glance, select a process with a large virtual set size and
drill into the Process Memory Regions report to see great information about each region
the process has allocated. Memory leaks are usually characterized by the DATA region
growing slowly over time, but it could also be leaking via memory-mapped files that
aren’t unmapped (you would see a growing number of MEMMAP/Priv regions).
Globally, you’ll also see GBL_SWAP_SPACE_UTIL on the increase if there is a leak
somewhere. Restarting the app or rebooting are workarounds, of course, but correcting
the offending program is a better solution.

A common cause of a memory bottleneck is an overly large file system buffer cache on
11.23. On 11.31, we fear similar issues may crop up with an overly large Unified File
Cache (UFC). If you have a memory bottleneck, and your 11.23 buffer cache size or
11.31 file cache size is 1GB or over, then think about shrinking it.

NOTE (new for the 2009 revision) the general arena of memory metrics is a minefield of
“gotchas”. Without going into too much detail, suffice it to say that the metrics you can
typically trust are total memory utilization (GBL_MEM_UTIL and GBL_MEM_FREE). The less
trustworthy metrics are User and System and UFC memory subsets of memory utilization
(GBL_MEM_USER, GBL_MEM_SYS, GBL_MEM_FILE_PAGE_CACHE), and virtual memory
(GBL_MEM_VIRT). This is because of some complex underlying instrumentation which,
quite frankly, is not very good on any OS including HP-UX. To get the best memory
metrics that you can, ask HP Support to obtain the latest Glance / PA patch version (we
know of patch changes as recent as 4.73.xxx) and if there are related kernel patches as
well. Also note that whether the file page cache should be included as a part of used
memory is a subject of debate. Some might say that since the UFC is simply keeping
“old” pages in case they are referenced again, that the memory is essentially free. Others
might contend that the UFC could be full of pages that are waiting to be written to disk
and thus “used” not “free.” Instrumentation seems as confused and conflicted on this
topic as people are, and sometimes cache will reported in one place, sometimes another.



In any case, the situation is less clear than it used to be with the old buffer cache
mechanism. Just something to be aware of.

If you don’t have any memory leaks, your buffer cache or UFC is reasonably sized, and
you still have memory pressure, then the only solution may be to buy more memory. Most
database servers allocate huge shared memory segments, and you’ll want to make sure
you have enough physical memory to keep them from paging. Be careful about programs
getting “out of memory” errors, though, because those are usually related to not having
enough swap space reservable or hitting a configuration limit (see System Setup Kernel
Tunables section above).

You can also get into some fancy areas for getting around some issues with memory.
Some 32bit applications using lots of shared memory benefit from configuring memory
windows (usually needed for running multiple instances of applications like 32bit Oracle,
Informix and SAP). Large page size is a technique that can be useful for some apps that
have very large working sets and good data locality, to avoid TLB thrashing. Java
administers its own virtual memory inside the JVM process as memory-mapped files that
are complex and subject to all kinds of java-specific parameters. These topics are a little
too deep for this dissertation and are of limited applicability. Only use them if your
application supplier recommends it.

Oh yeah, and if this all were not confusing enough: One of Stephen’s favorite topics is
‘false deactivations’. This is a really interesting situation that HP-UX can get itself into at
times, where you may see deactivations when memory if nearly full but NOT full enough
to cause pageouts! This appears to be a corner case (rarely seen), but if you notice
deactivations on a system with no paging, then you may be hitting this. It is not a ‘real’
memory bottleneck: The deactivated processes are not paged out and they get reactivated.
There is NO VM I/O generated and it is really just a ‘preemptive strike’ by the O/S just in
case the system does become ‘memory pressurized’! This situation is mostly just an
annoyance, because you cannot count solely on deactivations to indicate a memory
bottleneck.

Swap sizing

It’s very important to realize that there are two separate issues with regards to swap
configuration. You always need to have at least as much ‘reservable’ swap as your
applications will ever request. This is essentially the system’s limit on virtual memory
(for stack, heap, data, and all kinds of shared memory). The amount of swap actually in
use is a completely separate issue: the system typically reserves much more swap than is
ever in use. Swap only gets used when pageouts occur; it is reserved whenever virtual
memory (other than for program text) is allocated.

As mentioned above in the Disk Setup section, you should have at least two fixed device
swap partitions allocated on your system for fast paging when you do have paging
activity. Make sure they are the same size, on different physical disks, and at the same



swap priority, which should be a number less than that of any other swap areas (lower
numbers are higher priority). If possible, place the disks on different cards/controllers:
Stephen calls this “making sure that the card is not the bottleneck.” Monitor using
Glance’s Swap Space report or swapinfo to make sure the system keeps most or all of the
‘used’ swap on these devices (or in memory). Once you do that, you can take care of
having enough ‘reservable’ swap by several methods (watch GBL_SWAP_SPACE_UTIL).
Since unused reserved swap never actually has any I/Os done to it, you can bump up the
limit of virtual memory by enabling lower-priority swap areas on slow ‘spare’ volumes.
You need to turn pseudo swap on if you have less disk swap space configured than you
have physical memory installed. We recommend against enabling file system swap areas,
but you can do this as long as you’re sure they don’t get used (set their swap priority to a
higher number than all other areas).

Disk Bottlenecks

Disk Bottleneck Recipe Ingredients:
- Consistent high utilization on at least one disk device (GBL_DISK_UTIL_PEAK

> 50 or highest BYDSK_UTIL > 50%).

- Significant queuing lengths (GBL_DISK_SUBSYSTEM_QUEUE > 3 or any
BYDSK_REQUEST_QUEUE > 1).

- High service times on BUSY disks (BYDSK_SERVICE_TIME > 30 and
BYDSK_UTIL > 30)

- Processes or threads blocked on I/O wait reasons (PROC_STOP_REASON =
CACHE, DISK, IO).

Disk bottlenecks are easy to solve: Just recode all your programs to keep all their data
locked in memory all the time! Hey, memory is cheap! Sadly, this isn’t always (say ever)
possible, so the next most bestest alternative is to focus your disk tuning efforts on the
I/O hotspots. The perfect scenario for disk I/O is to spread the applications’ I/O activity
out over as many different HBAs, LUNs, and physical spindles as possible to maximize
overall throughput and avoid bottlenecks on any particular I/O path. Sadly, this isn’t
always possible either, because of the constraints of the application, downtime for
reconfigurations, etc.

To find the hotspots, use a performance tool that shows utilization on the different disk
devices. Both sar and iostat have by-disk information, as of course do Glance and PA.
Both Glance and sar have included more detail on I/O for 11.31 via breakdown by HBA.
Analysis usually starts by looking at historical data and focus on the disks that are most
heavily utilized at the specific times when there is a perceived problem with performance.
Filter your inspection using the BYDSK_UTIL metric to see utilization trends, and then use
the BYDSK_REQUEST_QUEUE to look for queuing. If you’re not looking at the data from
times when a problem occurs, you may be tuning the wrong things! If a disk is busy over
50 percent of the time, and there’s a queue on the disk, then there’s an opportunity to
tune. Note that PA’s metric GBL_DISK_UTIL_PEAK is not an average, nor does it track just
one disk over time. This metric is showing you the utilization of the busiest disk of all the



disks for a given interval, and of course a different disk could be the busiest disk every
interval. The other useful global metric for disk bottlenecks is the
GBL_DISK_SUBSYSTEM_QUEUE, which shows you the average number of processes
blocked on wait reasons related to Disk I/O.

A lot of old performance pundits like to use the Average Service Time on disks as a
bottleneck indicator. Higher than normal services times can indicate a bottleneck. But: be
careful that you are only looking at service times for busy disks! We assert (and have seen
over and over): “Service time metrics are CRAP when the disk is busy less than 10% of
the time.” Our rule of thumb: if the disk is busy (BYDSK_UTIL > 30), and service times
are bad (BYDSK_SERVICE_TIME > 30, measured in milliseconds average per I/O), only
then pay attention. Be careful: you will often see average service time (on a graph) look
very high for a specific address or addresses. But then drill down and you find that the
addresses with the unreasonable service times are doing little or no I/O! The addresses
doing massive I/O may have fantastic service times.

If your busiest disk is a swap device, then you have a memory bottleneck masquerading
as a disk bottleneck and you should address the memory issues first if possible. Also, see
the discussion above under System (Disk) Setup for optimizing swap device
configurations for performance.

Glance can be particularly useful if you can run it while a disk bottleneck is in progress,
because there are separate reports from the perspective of By-Disk, By-Filesystem, By-
Logical Volume, and in 11.31 also By-HBA. You can also see the logical (read/write
syscall) I/O versus physical I/O breakdown as well as physical I/O split by type (File
system, Raw, Virtual Memory (paging), and System (inode activity)). In Glance, you can
sort the process list on PROC_DISK_PHYS_IO_RATE, then select the processes doing most
of the I/O and bring up their list of open file descriptors and offsets, which may help
pinpoint the specific files that are involved. The problem with all the system performance
tools is that the internals of the disk hardware are opaque to them. You can have disk
arrays that show up as a single ‘disk’ in the tool, and specialized tools may be needed to
analyze the internals of the array. The specific vendor is where you’d go for these
specialized storage management tools.

Some general tips for improving disk I/O throughput include:
- Spread your disk I/O out as much as possible. It is better to keep 10 disks 10 percent

busy than one disk 100 percent busy. Try to spread busy file systems (and/or logical
volumes) out across multiple HBAs and physical disks (LUNs) to maximize your
throughput.

- Avoid excessive logging. Different applications may have configuration controls that
you can manipulate. For VxFS, managing the intent log is important. The vxtunefs

command may be useful. For suggested VxFS mount options, see the System Setup
section above.

- If you’re careful, you can try adjusting the scsi disk driver’s maximum queue depth
for particular disks of importance using scsictl. If you have guidelines on this



specific to the disk you are working with, try them. Generally increasing the
maximum queue depth will increase parallelism at the possible expense of
overloading the hardware: if you get QUEUE FULL errors then performance is
suffering and you should set the max queue depth (scsi_queue_depth) down.

Some facts to be aware of regarding disks:
- The smaller the I/O, the shorter the service time. The larger the I/O, the longer the

typical service time.
- Sequential I/O is faster than random I/O (decreased head movement).
- To maximize throughput, use larger I/O sizes for sequential I/O.
- The maximum buffered I/O size is 64KB.
- Maximum direct I/O size is 256KB (it can be 1MB on 11.23 with a patch for VxFS

and a couple of patches for VxVM).
- Crossing various boundaries will result in breaking up an I/O request into smaller

I/Os. These boundaries include: file system block, buffer chain, file extent and LVM
LTG boundaries.

In most cases, a very few processes will be responsible for most of the I/O overhead on a
system. Watch for I/O ‘abuse’: applications that create huge numbers of files or ones that
do large numbers of opens/closes of scratch files. You can tell if this is a problem if you
see a lot of ‘System’-type I/O on a busy disk (BYDSK_SYSTEM_IO_RATE). To track things
down, you can look for processes doing lots of I/O and spending significant amounts of
time in System CPU. If you catch them live, drill down into Glance’s Process System
Calls report to see what calls they’re making. Unfortunately, unless you own the source
code to the application (or the owner owes you a big favor), there is little you can do to
correct inefficient I/O programming.

Something that Stephen has found, that many people he has encountered are unaware of,
is something affectionately known as ‘read before write’. This is not just 11.31, but…you
need to be aware of it. It can happen in both the buffer cache and the file cache as well as
directio access, and it can have performance implications. We will not do the sizes,
numbers, etc, which can be found outside of this paper. We will do the short (right )
‘Stephenism’. If youz do a small write to either the buffer or file cache and the buffer or
page ain’t already in the cache, or when doing raw I/O --- this condition may just arise. If
the write is smaller than an 8K buffer or a 4K page (or there are alignment issues), youz
are gonna hafta read the buffer or page, perform the modification and then do the write.
This can really slow down small writes, writes with a random access pattern, and writes
under direct I/O.

Buffer Cache Bottlenecks

Buffer Cache Bottleneck Recipe Ingredients:



- Moderate utilization on at least one disk device (GBL_DISK_UTIL_PEAK or

highest BYDSK_UTIL > 25), and
- Consistently low Buffer Cache read hit percentage (GBL_MEM_CACHE_HIT_PCT

< 90%).

- Processes or threads blocked on Cache (PROC_STOP_REASON = CACHE).

If you’re seeing these symptoms in 11.23, then you may want to bump up the file system
buffer cache size, especially if you have ample free memory and managing an NFS, ftp,
Web, or other file server where you’d want to buffer a lot of file pages in memory — so
long as you don’t start paging out because of memory pressure! While some file system
I/O-intensive workloads can benefit from a larger buffer cache, in all cases you want to
avoid pageouts! In practice, we more often find that buffer cache is overconfigured rather
than underconfigured.

Also, if you manage a database server with primary I/O paths going to raw devices, then
the file system buffer cache just gets in the way. This is also true for the 11.31 UFC,
which is discussed in its own special section at the end of this paper.

To adjust the size of the 11.23 buffer cache, refer to the Kernel Tunables section above
discussing bufpages and dbc_max_pct. Since dbc_max_pct can be changed without a
reboot, it is OK to use that when experimenting with sizing. Just remember that the size
of the buffer cache will change later if you subsequently change the amount of physical
memory. We used to rail against over-configuration of Buffer Caches, which was a big
problem on HP-UX 11.0 and 11.11, but in 11.23 and later there is no performance penalty
for having a large cache IF you have the memory.

If you suspect, from the above symptoms, that you may have too large a Buffer Cache,
and you typically run with memory utilization (GBL_MEM_UTIL) over 90%, and your
buffer cache size (TBL_BUFFER_CACHE_USED, found in Glance in the System Tables
Report) is bigger than 1GB, then reconfigure your buffer cache size smaller. Configure it
to be the larger of either half its current size or 1GB. After the reconfiguration, go back
and watch the hit rate some more. Lather, Rinse, Repeat. Your primary goal is to lower
memory utilization so you don’t start paging out (see Memory Bottleneck discussion
above).

If your applications will take advantage of a very large cache, and you have a lot of
free/available memory --- by all means go ahead and configure a large cache! There is a
known case (described to Stephen by Mark Ray) of a customer with a buffer cache of
387GB! Now datsa GI-FREAKIN-GANTIC buffer cache, EH?!

Networking Bottlenecks

Networking Bottleneck Recipe Ingredients:



- High network byte rates (dependent on configuration) or utilization
(BYNETIF_IN_BYTE_RATE or BYNETIF_OUT_BYTE_RATE or BYNETIF_UTIL
> 2*average).

- Any Output Queuing (GBL_NET_OUTQUEUE > 0).

- Higher than normal number of processes or threads blocked networking
(PROC_STOP_REASON = NFS, LAN, RPC, Socket (if not idle), or
GBL_NETWORK_SUBSYSTEM_QUEUE > average).

- One CPU with a high System mode or Interrupt CPU utilization while other
CPUs are mostly idle (BYCPU_CPU_INTERRUPT_UTIL > 30).

- From lanadmin, frequent incrementing of “Outbound Discards” or “Excessive
Collisions”.

Networking bottlenecks can be very tricky to analyze. The system-level performance
tools do not provide enough information to drill down very much. Glance and PA have
metrics for packet, collision, error rates and utilization by interface (BYNETIF_UTIL).
Collisions in general aren’t a good performance indicator. They ‘just happen’ on active
networks, but sometimes they can indicate a duplex mismatch or a network out of spec.
Excessive collisions are one type of collision that does indicate a network bottleneck.

At the global level, look for times when byte rates or utilization (GBL_NET_UTIL_PEAK) is
higher than normal, and see if those times also have any output queue length
(GBL_NET_OUTQUEUE). Be careful, because we have seen that metric get ‘stuck’ at some
non-zero value when there is no load. That’s why you look for a rise in the activity. See if
there is a repeated pattern and focus on the workload during those times. You may also be
able to see network bottlenecks by watching for higher than normal values for networking
wait states in processes (which is used to derive PA’s network subsystem queue metric).
The netstat and lanadmin commands give you more detailed information, but they can
be tricky to understand. The ndd command can display and change networking-specific
parameters. You can dig up more information about ndd and net tuning in general from
the briefs directory in the HP Networking tools contrib archive (see References). Tools
like Network Node Manager are specifically designed to monitor the network from a non-
system-centric point of view.

High collision rates (which are misleading as they are actually errors) have been seen on
systems with mismatches in either duplex or speed settings, and improve (along with
performance) when the configuration is corrected.

If you use NFS a lot, the nfsstat command and Glance’s NFS Reports can be helpful in
monitoring traffic, especially on the server. If the NFS By System report on the server
shows one client causing lots of activity, run Glance on that client and see which
processes may be causing it.

Other Bottlenecks

Other Bottleneck Recipe Ingredients:



- No obvious major resource bottleneck.
- Processes or threads active, but spending significant time blocked on other

resources (PROC_CPU_TOTAL_UTIL > 0 and PROC_STOP_REASON = IPC,
MSG, SEM, PIPE, GRAPH).

If you dropped down through the cookbook to this last entry (meaning we didn’t peg the
‘easy’ bottlenecks), now you really have an interesting situation. Performance is a mess
but there’s no obvious bottleneck. Your best recourse at this point is to try to focus on the
problem from the symptom side. Chances are, performance isn’t always bad around the
clock. At what specific times is it bad? Make a record, then go back and look at your
historical performance data or compare glance screens from times when performance
tanks versus times when it zips (more technical terms). Do any of the global metrics look
significantly different? Pay particular attention to process blocked states (what are active
processes blocking on besides Priority?). Semaphore and other Interprocess
Communication subsystems often have internal bottlenecks. In PA, look for higher than
normal values for GBL_IPC_SUBSYSTEM_QUEUE.

Once you find out when the problems occur, work on which processes are the focus of the
problem. Are all applications equally affected? If the problem is restricted to one
application, what are the processes most often waiting on? Does the problem occur only
when some other application is active (there could be an interaction issue)? You can drill
down in Glance into the process wait states and system calls to see what it’s doing. In PA,
be wary of the PROC_*_WAIT_PCT metrics as they actually reflect the percentage of time
over the life of the process, not during the interval they are logged. You may need some
application-specific help at this point to do anything useful. One trial and error method is
to move some applications (or users) off the system to see if you can reduce the
contention even if you haven’t nailed it. Alternatively, you can call Stephen and ask for a
consulting engagement!

If you’ve done your work and tuned the system as best you can, you might wonder, “At
what point can I just blame bad performance on the application itself?” Feel free to do
this at any time, especially if it makes you feel good.

11.31’s Unified File Cache

We devote the following short section to delving a little deeper into a significant change
in 11.31 specific to performance: the addition of the Unified File Cache (UFC), also
called the file page cache.

We have already discussed what actually controls the size of the UFC (filecache_max
and filecache_min). Let’s just talk a little about this cache without going into the
internals or exactly how it works, etc. Since the old concept of buffer cache ‘goes away’
(sorta) with 11.31, we just want you to know a little about the UFC.



The buffer cache still exists in 11.31, it is just not significant any more because it is not
caching regular buffered file I/O. The other papers mentioned in our References section
have details on things like the internal parameter discovered_direct_iosize (and
many other JFS/VxFS file system parameters – all of the parameters we are referring to
can be found in the man-page for vxtunefs), but you should know that the file cache is
used for read and write requests smaller than discovered_direct_iosize, and it also
allows for read ahead and asynchronous writes. While the buffer cache could have buffers
of many different sizes, a major difference is that the file cache is based on a 4KB page.
Another major difference is that JFS no longer performs ‘flush behind’. Now, dirty pages
are flushed by vhand or vxfsd, so you will generally see these daemons more active on
11.31.

Prior to 11.31, HP-UX used the buffer cache for read, write and sendfile access. It also
had a separate Page Cache for memory mapped file [mmap()] access. Because they were
different, it caused significant problems with data coherency between these two separate
entities. You could not guarantee WHAT the data in the file would look like if the file
was being ‘used’ concurrently at the same time by both methods (buffer cache and
memory mapped), which prevented some applications from porting to HP-UX. With
11.31, the unified file access allows for more easier portability and automatic
synchronization.

OK: remember…no real internals here --- we just want you to sorta understand this new
UFC ‘animal’. The kernel manages the UFC ‘mappings’ through the Virtual Memory
subsystem. It is very similar to the way it manages other kernel objects like shared
memory, shared libraries, shared text and uses the ‘process structures’. In 11.23, the File
Cache just appears to be part of User memory. If you have taken a HP-UX Internals
course or read Chris Cooper’s HP-UX Internals book or taken one of Stephen’s Internals
and Performance seminars, then you already know what vas, pregions, regions, virtual
frame descriptors (vfd’s) and disk block descriptors (dbd’s) are. The vfd is used to locate
a page in memory and the dbd is used to locate a page on disk. The UFC locates the 4KB
pages of the file cache using the btree of vfd’s and dbd’s. This manner of locating pages
in the cache (using the btree) is for fast access. OH YEAH: the UFC is also ccNUMA-
aware, and supports large pages.

UFC and bufcache differences

The buffer cache is (duh) buffer based, usually uses an 8KB buffer size, and it uses a
Least Recently Used algorithm. The UFC is 4KB page-based and uses a Not Recently
Used algorithm. It is managed by vhand (the Virtual Memory Subsystem). File Cache
pages are allocated from its own File Cache Memory Resource Group and therefore has
its own concept of ‘freemem’. In 11.31, vhand is expected to be more active. This is due
to the fact that it now has the responsibility of aging and stealing pages in the file cache.
Now, when memory pressure begins to happen…vhand might not be able to guarantee the
throughput to free enough pages to satisfy the demand. SO: 11.31 introduced inline



paging – a thread/process/function requesting memory can execute vhand paging code in
its own context (if it did not get the memory that it requested and a ‘fault’ occurred).

One big difference between the bufcache and the UFC shows up in the performance tools.
For 11.31 versions, Glance added the metric GBL_MEM_FILE_PAGE_CACHE which is
supposed to be the size of the UFC, however Doug’s testing on 11.31 showed this not to
always be true! There were several defects in this area, some down into the kernel
instrumentation itself (thus affecting any and all tools not just Glance), which made these
metrics are well as User and System memory metrics “flakey”. While problems will be
addressed in the future (and more recent software revs will typically get better), don’t
assume those numbers are solid. If you want to test this for yourself, you can experiment
(on a non-production system): try bumping up the minimum filecache on an idle system
while watching memory statistics (like Glance’s Memory Report)... one would think that
you should see Free memory go down and FileCache memory go up, exactly equivalent to
the size increase between the current used FileCache and the new minimum. You may see
something a bit different. This is because (in Glance 4.7 versions), the inactive parts of
the UFC are ‘hiding’ and show up (incorrectly) bucketed as User or System memory. The
FileCache metric could show a value (which is the same as shown by the command
kcusage filecache_max) that is actually less than your setting for filecache_min! Do
we have your head spinning yet? Now, we are sure that improvements are being made,
but its good to be aware of now. Bottom line: in 11.31 the User (and to a lesser extent,
System) memory metrics are suspect. The FileCache size displayed by the tools may not
be reflective of the ‘real’ size of the UFC. Fortunately, you can depend on the Free
memory and total Used memory metrics (GBL_MEM_FREE and GBL_MEM_UTIL) still being
accurate, as well as the other metrics that we rely on as memory bottleneck indicators.

FINALLY, here are a few other UFC options and tunables besides filecache_max and
filecache_min that we’re not going to say much about... so if youz wanna know more
youz gotta go lookemup:

 fcache_seqlimit_system/fcache_seqlimit_file – the sequential access
limit on the system and the sequential access limit per file, both are expressed as a
percentage of the maximum file cache size. Both default to 100.

 fcache_fb_policy – this can enable flush behind. In 11.31 (unlike 11.23) it is
disabled by default for performance.

 fadvise()/fcntl() – programmer stuff. Options to this library function (3) and
this system call (2) can be used to set ccNUMA policies, large page hints and
syncer interval options per file.

Cells, Cell Local Memory, Locality Domains, NUMA Latencies
and Processor Sets

What follows is a section specific to ‘Superdomey’ systems (cell-based servers).
Definitely optional reading if you have these types of systems and are interested.



Considerations specific to cells/ldoms can be pretty intense, so we gotta hurt youz a little
here, BUT…methinks it gotta be done and these things certainly have become issues
hurting and helping performance... and that is what this paper is all about, EH? It
certainly is gonna look like we drifted into INTERNALS, but we really didn’t! If this
doesn’t get nerdy enough for you, we can surely point you places to where you
[masochistic people?] can really go hurt yourselves! OK, here goes…

The NUMA Hierarchy

We really gotta talk to youz about ‘dis ‘NUMA stuff, cause then you’ll be
‘backgrounded’ so we can tell ya what we (eventually!) want to say further on about
performance!

The NUMA Physical Hierarchy goes from the potentially multithreaded processor, to the
possibly multi-cored socket, to the Front-side bus, to the Cell, up to one or two crossbar
hops. From the perspective of the Operating System, the logical abstraction of the
Locality Domain (LDOM) maps to a physical cell. Generally, the View of NUMA by the
O/S is very simplistic.

The latencies to access data across these hierarchies vary by source and destination. The
best latency is for a cache-to-cache copy between cores on the same front-side bus (85ns).
Next, is a miss to memory on the same cell as the core requesting the memory (185ns). A
cache-to-cache miss is most costly when not on the same font-side bus even when in the
same cell (277ns, 466ns). Cache-to-cache misses on large configurations are more even
costly (up to 677ns). A one hop memory miss is 386ns while a two hop is 460ns.

Attempt to reduce data cache miss stall cycles several ways. Use the right system: 1) A
small bus-based system will provide better single stream performance. 2) If the workload
scales, a cell-based system could be capable of more throughput. In a NUMA system, you
should consider placing things closely that share modified data. Finally, it is goodness if
applications can make use of Cell Local Memory.

OK, NOW: we can’t be teachin’ ya the detailed internals, can’t be teachin’ ya the
commands we will reference, can’t be teachin’ ya Oracle and we can’t be teachin’ ya
exactly how to do all of the things we are about to TRY and educate ya on, K? K! Here
goes:

Cell-local memory

We will try to cover this in English (or at least ‘Stephen’s English as a second language’).
Cell Local Memory (CLM) are blocks of memory coming from a given cell appearing at a
range of addresses. CLM is not interleaved with memory from other cells. Access times
to these addresses will be optimal for all of the processors in the same cell. The amount of
CLM is configurable at boot time.



In 11.31, the kernel makes heavy use of CLM. Oracle 10gR2 uses CLM (more Oracle
later). Applications that are not NUMA-aware will also benefit from CLM ‘cause of the
kernel allocation policies. Private data (hopefully, you know what private data is and the
various ‘parts’ like stack, etc.) is allocated in CLM. Shared data (you gotta know this by
now!) is allocated in interleaved memory.

In the past, CLM did not really ‘help’. Each thread is allocated a home locality – the
locality in which it was launched. CLM allocations are made from the home locality and
unfortunately, threads seem to quickly migrate from their ‘home cells’. The bottom line is
that all accesses end up being made to a remote CLM!

There are things to consider when configuring Cell Local Memory and there are (we
borrowed ‘em) some starting point suggestions. What if you have a 6-cell system? 5 out
of 6 accesses are remote! It can’t get too much worse…can it? If your application can take
advantage of CLM, you have a potentially large upside and a potentially small downside.

Those stolen (borrowed?) suggested starting points:
 Any O/S with Oracle 10gR2 87%
 11.31 with earlier version of Oracle 37.5%
 11.31 with non-NUMA aware apps 37.5%
 11.23 with non-NUMA aware apps 25%

Controlling placement

Here’s an overview of the default launch policies, so you can see how this will affect
‘where’ processes run on a cell/ldom-based system:

 A new process is created in the least loaded locality
 A new thread is created in the same locality, one per CPU
 It will spill to the next least-loaded locality
 Threads/processes are free to migrate – there is no binding
 The ‘home locality’ is the chosen locality…Cell Local Memory is allocated here

Threads are usually ‘moved’ by the HP-UX scheduler due to idle stealing and balancing
policies.

In order to get CLM to work, we need to tie each thread to its home locality. This is most
easily done using non-default launch policies. One (easy) way to control placement is to
use a command like mpsched –p <policy>, to use a non-default launch policy. The
mpsched command controls the processor or locality domain on which a specific
process/thread executes.

Consecutive threads should be specified as to which LDOM they will be created in. This
ties threads to their home LDOM. Read up on mpsched(1) for policies: RR, RR_TREE,
LL, FILL, FILL_TREE, PACKED, NONE. We will not explain these in detail…just
wanna mention the policies.



You can use mpsched to see localities and CPUs, to bind a process to a specific
processor, to execute a command in a specific LDOM and to execute all of a process’
threads in the same specific LDOM.

Another way to control placement is by using Processor Sets…AKA PSETS. It actually
seems that whenever you talk to almost anyone and mention ‘PSETS’ - their eyes glaze
over and roll back in their head!

Using PSETS you can:
 dedicate processors to specific workloads
 separate workload pieces to improve cache and TLB behavior
 virtually remove processors to maintain consistent performance when ramping up

a new system
 isolate processors with a high interrupt handling load
 you can provide near real-time environments for workloads that are latency

sensitive…this can be done with Real Time PSET

There are disadvantages to using PSETS. They can be a large pain to set up until you are
familiar with them. PSETS will not persist beyond a reboot and you are taking any
flexibility away from the scheduler.

For you to manage processor sets you will need to definitely read up and learn
psrset(1). With psrset you can create a new processor set, assign processors to a new
PSET, tie/bind process IDs to a processor set, execute a command in a processor set and
assign processes that belong to a specific user to a processor set. You can also display the
attributes of a PSET, show the PSET assignments for processes and display the processes
that are assigned to a specific PSET.

Finally, we JUST want to mention RTE PSETS (Real Time Extensions). This is also
done with the psrset command and you are reserving processors for real time tasks. It is a
processor set, BUT…there are NO external I/O interrupts taken and NO callout processes
and NO kernel daemons. This one we want you to go figure out…not gonna write a
novella here!

LAST (so far) and certainly not least: we said we would talk about Oracle and Cell
Local Memory and some performance improvement. Here we go…

In Oracle 10g NUMA optimization is enabled by default. Prior to 10g, it was ‘available’
but not enabled. It appears that it is now ENABLED on all versions of Oracle. I say this
from what I have seen over the last year. In the past, you had to know about it and enable
it! The parameter that is set (in the parameter file) is
_enable_NUMA_optimization=true. We have mentioned in the past that (normally)
when one sees multiple Oracle SGAs of equal size attached by the identical number of
processes – it is usually due to shmmax being smaller than the size that the DBA has
requested for the SGA --- and it got ‘broken up’ into shmmax-sized segments.



These days, you are liable to see several equal sized shared memory segments and they
will not be as large as shmmax! This is due to the above mentioned parameter being set
to true. Let’s just stick with 10g as the example, since it is the default behavior. Still keep
in mind: you can set the parameter to false on any version of Oracle. This use of multiple
SGAs is expected for performance reasons.

In a paper from Oracle they state that they create one shared memory segment per process
group and one segment that ‘stripes’ across all groups (along with the small bootstrap
segment). Performance should be better with multiple segments. They also say that
NUMA optimization is an internal optimization on the way the data structures are laid out
and how the buffer cache is laid out such that we reduce the total number of remote cache
misses an a large system.

SO, here is what Stephen has typically seen: On an ‘N’ numbered cell-based system there
will be ‘N’ number of equal sized shared memory segments and one more (that always
appears smaller) which is the segment that is ‘striped’. Then you will (as always) see the
very small bootstrap segment. Each segment will be attached by the same number of
processes (for that specific instance of Oracle). You may see this multiple times on a
single system, only the sizes (for the ‘N+’ segments) may differ from group to group.
This just means that you have multiple instances of Oracle in the same system…with the
same number of cells.

IMPORTANT NOTE: the only way this parameter being set to true would boost
performance is IF you have Cell Local Memory configured on the system. ISSUE: if
CLM is not configured and the parameter is true, Oracle will just go ahead and break up
the SGA into the pieces of cell local memory…it assumes that CLM is configured!
WITHOUT CLM configured…AT BEST you will have the same performance as you
would with one large SGA that did not get broken up and placed in several locality
domains. My opinion: performance should certainly degrade as processes and threads
begin to migrate. If CLM is not configured, Stephen says to set
_enable_NUMA_optimization=false. This will prevent Oracle from ‘thinking’ it is
going to ‘do right’ and set up the SGA for optimization for CLM!

NOW: a year after we let you know about this…Oracle has come out with a patch
(documented as 8199533 as of 5/15/09) that disables the NUMA optimization
(_enable_NUMA_optimization=false) and sets: _db_block_numa=1.

If you survived this CLM/NUMA section and you are actually hungry for more info about
this topic (or you are a glutton for punishment), then go to docs.hp.com and search on
LORA. It stands for Locality-Optimized Resource Alignment and it is a cool geeky area
to learn, and it just may have some relevance to your systems! We also put a pointer to an
Oracle-Integrity whitepaper that talks about this in our references section below.



Conclusion

There is no conclusion to good performance: the saga never ends. Collect good data, train
yourself on what is normal, change one thing at a time when you can, and don’t spend
time chasing issues that aren’t problems.

What follows are the most common situations that Stephen encounters when he is called
in to analyze performance on servers, from most common to least common:

1. No bottleneck at all. Many systems are overconfigured and underutilized. This is
what makes virtualization and consolidation popular. If your servers are in this
category: congratulations! Now you have some knowledge to verify things are
OK on your own, and to know what to look for when they’re not OK.

2. Memory bottlenecks. About half the time these can be cured simply by reducing
an over configured buffer cache. The other half of the time, the system really
does need more memory (or, applications need to use less).

3. Disk bottlenecks. When a disk issue is not a side effect of memory pressure,
then resolution usually involves some kind of load rebalancing (like, move your
DB onto a striped volume or something). I/O issues are beginning to become
more frequent. The ESS Customer Performance Team would probably tell you
that most of the issues that land in their lap are I/O related.

4. User CPU bottlenecks. Runaway or inefficient processes of one kind or another
are often the cause. You can recode your way out or ‘MIP’ your way out with
faster/more CPUs.

5. System CPU bottlenecks. Pretty rare, and usually caused by bad programming.
6. Buffer cache bottleneck: Underconfigured buffer cache can lead to sucky I/O

performance, and is typically configured too low by mistake.
7. Networking or other bottlenecks.

The most important thing to keep in mind is: Performance tuning is a discipline that will
soon no longer be needed, as all systems of the future will automagically tune
themselves... yeah, right! Marketing has been claiming that for many years, but we think
NOT! Good ol’ hands-on performance tuning is around to stay. It is not a science; it is
more like a mixture of art, witchcraft, a little smoke (and mirrors), and a dash of luck
(possibly drugs). May yours be the good kind.
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