
Chapter 16 LVM

September 2003 Chapter 16 / Page 1

Chapter 16
-

LVM

Chapter 16 LVM

September 2003 Chapter 16 / Page 2

INDEX

Terminology 4
LVM Structural Information 4

PVRA, BDRA and VGRA.. 5
LIF Header and LIF Volume .. 5
PV-ID and VG-ID... 6
vgcfgbackup(1M).. 6
/etc/lvmtab and vgscan(1M) ... 7

Parameters and Limitations 8
LVM parameters ... 8
How the size of the VGRA is calculated .. 8
Maximum max_pe values for non-boot disks... 10
Maximum max_pe values for boot disks.. 11
Supported JFS (VxFS) file and file system sizes.. 12
Supported HFS file and file system sizes ... 12

Display Commands 13
Information on VGs .. 13
Information on PVs... 13
Information on LVs .. 14

LVM Basic Functionality 15
Adding a new PV / VG / LV... 15
Modifying a PV / VG / LV ... 16
Removing a PV / VG / LV.. 18
Moving physical extents ... 18
Importing and exporting VGs ... 19

MirrorDisk/UX 20
Basic functionality .. 20
Physical Volume Groups - PVGs ... 21
Root Mirror ... 22

PV Links (Alternate Paths) 23
Configuring PV Links... 23
Changing PV Link order... 25
Utility cmpdisks.. 25

Offline Diagnostic Environment (ODE) 26
LVM and MC/ServiceGuard (Cluster LVM) 27
Replacing a Failed LVM Disk 28

Identifying the failed disk ... 29
Disk Replacement Flow Chart.. 29
Hot-Swap Procedure for Attached Physical Volumes.. 31
Hot-Swap Procedure for Unattached Physical Volumes .. 32

Removing a Ghost Disk using the PV Key 33
What is a Ghost Disk .. 33
Removing a PV using its PV key.. 35

Increasing the Root LV's size 37
Using Ignite/UX.. 37

Chapter 16 LVM

September 2003 Chapter 16 / Page 3

Using the Unofficial Procedure .. 37
LIF/BDRA Configuration Procedure 40
Commands Overview 41

Chapter 16 LVM

September 2003 Chapter 16 / Page 4

2912K

Terminology

The following abbreviations are common in LVM and will be used during this chapter:

VG = Volume Group
LV = Logical Volume
PV = Physical Volume
PVG = Physical Volume Group
PE = Physical Extent
LE = Logical Extent
FS = File System
VGRA = Volume Group Reserved Area
VGDA = Volume Group Descriptor Area
VGSA = Volume Group Status Area
MCR = Mirror Consistency Record
PVRA = Physical Volume Reserved Area
BDRA = Boot Data Reserved Area

LVM Structural Information

The LVM structural information resides in reserved areas (PVRA, VGRA) at the beginning of
any LVM disk and is also called the LVM header. The following image shows the on disk
structure of an LVM disk:

 non-bootable bootable
 disk disk

PVRA LIF header
VGRA PVRA

 BDRA
 LIF volume
 VGRA

User Data

User Data

Bad block pool Bad block pool

NOTE: the LVM header of a bootable disk is always 2912 KB. The header size of a non-bootable disk is not

fixed. It depends on the VG configuration parameters PVs/VG (-p max_pv), PEs/PV (-e max_pe) and
LVs/VG (-l max_lv), but it is usually smaller. The VG’s VGRA must not be larger than a single extent..

NOTE: Itanium systems (UX 11.20, 11.22, 11.23) have a 100MB EFI partition at the beginning of the disk.

Refer to the Itanium Chapter for details.

Chapter 16 LVM

September 2003 Chapter 16 / Page 5

PVRA, BDRA and VGRA

1. The PVRA is unique for every PV in the VG. It contains:

• LVMREC describing the PV with e.g. PV-ID, VG-ID, PV number in VG, PE size;
start and length of: VGRA, BDRA (if any), BBDIR, User Data and the Bad Block
Pool; in case of a ServiceGuard Cluster the Cluster ID and information about the
Cluster Lock Area.

• BBDIR (Bad Block Directory, maintaining the Bad Block Pool).

2. The BDRA (only created with pvcreate –B) contains boot relevant information, e.g.:

• Information about PVs in root VG

• Information about Boot/Swap/Root LVs (major/minor numbers, etc.)

3. The VGRA is identical for any PV of the VG. It contains:

• The VGDA describing the VG, with e.g.:

o VG-ID, configured max_lv, max_pv, max_pe.

o per LV information: LV flags, size, schedule strategy, number of mirrors,
stripes, stripe size, etc.

o per PV information: PV-ID, PV size, PV flags, Extent mapping, etc.

• The VGSA containing information about missing PVs and stale extents.

• The MCRs for Mirror Write Cache handling.

LIF Header and LIF Volume

LIF stands for Logical Interchange Format. The LIF header resides in the first 8 KB of any
LVM boot disk. It contains the directory to the LIF volume that begins after the BDRA. It can
be displayed using lifls(1M):

lifls -l /dev/rdsk/c1t6d0
volume ISL10 data size 7984 directory size 8
filename type start size implement created
===
ISL -12800 584 306 0 00/11/08 20:49:59
AUTO -12289 896 1 0 00/11/08 20:49:59
HPUX -12928 904 848 0 00/11/08 20:50:00
PAD -12290 1752 1580 0 00/11/08 20:50:00
LABEL BIN 3336 8 0 99/10/08 02:48:02

The LIF volume contains files necessary to boot: ISL, HPUX, LABEL and AUTO (for
automatical boot). Look at the Boot Chapter in order to get a detailed explanation of each LIF
file.

Chapter 16 LVM

September 2003 Chapter 16 / Page 6

PV-ID and VG-ID

Any PV has a unique 8 byte long identifier - the PV-ID. The VG-ID is a unique identifier for
the VG that this PV belongs to. It is also 8 byte long. Their values are stored in the PVRA.

The (contributed) utility lvm displays the complete LVM header:
lvm -p -d /dev/rdsk/c1t2d0 | more
...
...
/* The physical volume ID. */ 2000252410 965817345
i.e. pvcreate(1m) was run on CPU with ID 2000252410 at Wed Aug 9
12:35:45 2000
/* The volume group ID. */ 2000252410 965817462
i.e. vgcreate(1m) was run on CPU with ID 2000252410 at Wed Aug 9
12:37:42 2000
...

Since the lvm tool may not always be available you can also read out PV-ID and VG-ID using
standard commands that are available on any HP-UX system.

• How to use xd(1) to extract PV-ID and VG-ID:

xd -j8200 -N16 -tu /dev/rdsk/c1t2d0
0000000 2000252410 965817345 2000252410 965817462
 PV CPU-ID PV timestamp VG CPU-ID VG timestamp

The above information translates to:

• pvcreate and vgcreate was run on the sytem with systemID (uname –i) 2000252410
• pvcreate was run at timestamp 965817345 (seconds after Jan 1st 1970 0:00 UTC)
• vgcreate was run at timestamp 965817462 (117 seconds later)

or using adb(1):

• PV-ID:
echo "0d8200?UY" | adb /dev/dsk/c1t2d0
2008: 2000252410 2000 Aug 9 12:35:45

• VG-ID:
echo "0d8208?UY" | adb /dev/dsk/c1t2d0
2010: 2000252410 2000 Aug 9 12:37:42

vgcfgbackup(1M)

A copy of the LVM header is held within the file system in the LVM backup file
(/etc/lvmconf/*.conf). Any modification of the LVM structure, e.g. through LVM commands
like lvcreate, lvchange, vgextend, etc. will be automatically saved in the VGs config file
through vgcfgbackup(1M).

You can run vgcfgbackup(1M) manually at any time:

Chapter 16 LVM

September 2003 Chapter 16 / Page 7

vgcfgbackup vgXY
Volume Group configuration for /dev/vgXY has been saved in
/etc/lvmconf/vgXY.conf

The content of the backup file is binary but you can use the -l option of vgcfgrestore(1M) to
display at least the disks belonging to the VG:

vgcfgrestore -l -n vgXY
Volume Group Configuration information in "/etc/lvmconf/vgXY.conf"
VG Name /dev/vgXY
 ---- Physical volumes : 1 ----
 /dev/rdsk/c1t6d0 (Bootable)

If the LVM header has been accidently overwritten or became corrupted on the disk you can
recover it from this backup file using vgcfgrestore.

You usually use vgcfgrestore in case of a disk failure in order to write the LVM header from
this backup file to the new disk:

vgcfgrestore -n vgXY /dev/rdsk/c1t6d0
Volume Group configuration has been restored to /dev/rdsk/c1t6d0

NOTE: If you modify the LVM configuration but do not want the backup file to be updated, use “-A n” with

the LVM command. Anyway - the previous configuration can be found in /etc/lvmconf/*.conf.old.

NOTE: vgcfgrestore does not restore the LIF volume. This is done by mkboot.

/etc/lvmtab and vgscan(1M)

The file /etc/lvmtab contains information about all known VGs and their PVs. It is mainly
used by vgchange(1M) at VG activation time. lvmtab is a binary file but you can display the
printable strings in that file using the strings(1M) command:

strings /etc/lvmtab
/dev/vg00
/dev/dsk/c2t0d0
/dev/vgsap
/dev/dsk/c4t0d0
/dev/dsk/c5t0d0
/dev/dsk/c4t1d0
/dev/dsk/c5t1d0
/dev/vg01
/dev/dsk/c6t0d0

NOTE: this is only the “visible” part of the lvmtab. It does also contain the VG-IDs, the total number of VGs,

the number of PVs per VG and status information. Additional garbage characters printed by strings are not a
problem as long as no important data is missing.

All VGs listed in lvmtab are automatically activated during system startup. This is done in the
script /sbin/lvmrc, based upon configuration in /etc/lvmrc.
If you do not trust the information in the lvmtab anymore because it may have become corrupt
somehow you can easily recreate it from PVRA and VGRA on the disks through the
vgscan(1M) command. But be sure to save a copy before:

cp /etc/lvmtab /etc/lvmtab.old
vgscan -v

Chapter 16 LVM

September 2003 Chapter 16 / Page 8

Warnings can usually be ignored.

NOTE: If you leave the original file in place then vgscan uses its contents for creating a new one. This may fail

depending on the file’s contents. You may then try to move the lvmtab away. If there is no /etc/lvmtab, then
vgscan recreates it from the scratch. In this case information about currently deactivated VGs may be missing
in the new file!

ATTENTION: On a ServiceGuard systems vgscan may fail. This is a known problem that is solved by LVM

commands cumulative patches. The workaround is easy, just remove the file /dev/slvmvg before running
vgscan.

ATTENTION: On systems using data replication products like BusinessCopy/XP, ContinousAccess/XP, EMC

SRDF or EMC Timefinder vgscan may accidently add undesired PVs to VGs.

NOTE: vgscan does not take care about the order of alternate links! It may be necessary to switch the links

afterwards (see section PV Links below).

Parameters and Limitations

LVM parameters

Parameter Default Maximum set by
max. number of VGs 10 256 kernel tunable maxvgs
number of PVs per VG 16 255 vgcreate -p <max_pv>
number of LVs per VG 255 255 vgcreate -l <max_lv>
PE size (2^X) 4 MB 256 MB vgcreate -s <pe_size>
max. number of PE per PV 1016 PEs 65535 PEs vgcreate -e <max_pe>
max. number of PE per LV 0 PEs 65535 PEs lvcreate -l <le_number>
LV size 0 MB 16 TB lvcreate -L <MB>

How the size of the VGRA is calculated

The VGRA size of any non-bootable disk must fit into the size of a single PE. For a bootable
disk the VGRA needs to start at offset 2144K while user data always starts at offset 2912K.
Due to these constraints the maximum VGRA size of bootable disks is even more restricted as
for regular disks.

However, it is good to know how the size of the VGRA depends on the VG’s configuration at
creation time. The folowing set or formulas calculates vgra_len in KB.

vgda_len = (ROUNDUP (16 * max_lv, 1024) +
 (max_pv * ROUNDUP (16 + 4 * max_pe, 1024))) / 1024 + 2;

vgsa_len = ROUNDUP (36 + 12 * ROUNDUP (max_pv, 32) +
 ROUNDUP(max_pe,8) * max_pv / 8, 1024) / 1024;

mcr_len = 8;

vgra_len = 2 * (ROUNDUP (vgda_len + vgsa_len, 8) + mcr_len);

The ROUNDUP() function used above rounds up arg1 to a multiple of arg2.

Chapter 16 LVM

September 2003 Chapter 16 / Page 9

The lvmcompute tool can be used to easily calculate the VGRA size and provides also table
outputs like those shown in the following section. It is available from the HP internal site
ftp://einstein.grc.hp.com/TOOLS/LVM.

ftp://einstein.grc.hp.com/TOOLS/LVM/lvmcompute.html
ftp://einstein.grc.hp.com/TOOLS/LVM

Chapter 16 LVM

September 2003 Chapter 16 / Page 10

Maximum max_pe values for non-boot disks

The following table lists the maximum allowed max_pe (-e) values depending on max_pv (-p)
and pe_size (-s) along with their resulting PV sizes in GB. Since the lv_max parameter has a
lower impact on the results, the table is caculated for lv_max=255, which is default and also
the worst-case. The fields for the default settings –s 4 –p 16 are shaded. Light shading
indicates that the only restriction is the max. 65535 PE barrier for any given PV.

PE size (vgcreate –s pe_size) in MB
 1 2 4 8 16 32 64 128 256

1 65535
64.0G

65535
128.0G

65535
256.0G

65535
512.0G

65535
1024.0G

65535
2048.0G

65535
4095.9G

65535
8191.9G

65535
16383.8G

2 61692
60.2G

65535
128.0G

65535
256.0G

65535
512.0G

65535
1024.0G

65535
2048.0G

65535
4095.9G

65535
8191.9G

65535
16383.8G

4 30716
30.0G

62460
122.0G

65535
256.0G

65535
512.0G

65535
1024.0G

65535
2048.0G

65535
4095.9G

65535
8191.9G

65535
16383.8G

8 15356
15.0G

31228
61.0G

62972
246.0G

65535
512.0G

65535
1024.0G

65535
2048.0G

65535
4095.9G

65535
8191.9G

65535
16383.8G

16 7676
7.5G

15612
30.5G

31484
123.0G

63228
494.0G

65535
1024.0G

65535
2048.0G

65535
4095.9G

65535
8191.9G

65535
16383.8G

32 3836
3.7G

7676
15.0G

15612
61.0G

31484
246.0G

63228
987.9G

65535
2048.0G

65535
4095.9G

65535
8191.9G

65535
16383.8G

48 2556
2.5G

5116
10.0G

10492
41.0G

20988
164.0G

42236
659.9G

65535
2048.0G

65535
4095.9G

65535
8191.9G

65535
16383.8G

64 1788
1.7G

3836
7.5G

7676
30.0G

15612
122.0G

31484
491.9G

63484
1983.9G

65535
4095.9G

65535
8191.9G

65535
16383.8G

80 1532
1.5G

3068
6.0G

6140
24.0G

12540
98.0G

25340
395.9G

50684
1583.9G

65535
4095.9G

65535
8191.9G

65535
16383.8G

96 1276
1.2G

2556
5.0G

5116
20.0G

10492
82.0G

20988
327.9G

42236
1319.9G

65535
4095.9G

65535
8191.9G

65535
16383.8G

112 1020
1.0G

2044
4.0G

4348
17.0G

8956
70.0G

17916
279.9G

36092
1127.9G

65535
4095.9G

65535
8191.9G

65535
16383.8G

128 764
0.7G

1788
3.5G

3836
15.0G

7676
60.0G

15612
243.9G

31740
991.9G

63484
3967.8G

65535
8191.9G

65535
16383.8G

144 764
0.7G

1532
3.0G

3324
13.0G

6908
54.0G

14076
219.9G

28156
879.9G

56316
3519.8G

65535
8191.9G

65535
16383.8G

160 764
0.7G

1532
3.0G

3068
12.0G

6140
48.0G

12540
195.9G

25340
791.9G

50684
3167.8G

65535
8191.9G

65535
16383.8G

176 508
0.5G

1276
2.5G

2812
11.0G

5628
44.0G

11516
179.9G

23036
719.9G

46076
2879.8G

65535
8191.9G

65535
16383.8G

192 508
0.5G

1276
2.5G

2556
10.0G

5116
40.0G

10492
163.9G

20988
655.9G

42236
2639.8G

65535
8191.9G

65535
16383.8G

208 508
0.5G

1020
2.0G

2300
9.0G

4860
38.0G

9724
151.9G

19452
607.9G

38908
2431.8G

65535
8191.9G

65535
16383.8G

224 508
0.5G

1020
2.0G

2044
8.0G

4348
34.0G

8956
139.9G

17916
559.9G

36092
2255.8G

65535
8191.9G

65535
16383.8G

240 504
0.5G

1020
2.0G

2044
8.0G

4092
32.0G

8444
131.9G

16892
527.9G

33788
2111.8G

65535
8191.9G

65535
16383.8G

PV
s/

V
G

 (v
gc

re
at

e
–p

 m
ax

_p
v)

255 252
0.2G

764
1.5G

1788
7.0G

3836
30.0G

7932
123.9G

15868
495.9G

31740
1983.8G

63740
7967.5G

65535
16383.8G

Chapter 16 LVM

September 2003 Chapter 16 / Page 11

Maximum max_pe values for boot disks

The following table lists the maximum allowed max_pe (-e) values depending on max_pv (-p)
and pe_size (-s) along with their resulting PV sizes in GB. Since the lv_max parameter has a
lower impact on the results, the table is caculated for lv_max=255, which is default and also a
the worst-case. The fields for the default settings –s 4 –p 16 are shaded.

PE size (vgcreate –s pe_size) in MB

 1 2 4 8 16 32 64 128 256

1 65535
64.0G

65535
128.0G

65535
256.0G

65535
512.0G

65535
1024.0G

65535
2048.0G

65535
4095.9G

65535
8191.9G

65535
16383.8G

2 43772
42.7G

43772
85.5G

43772
171.0G

43772
342.0G

43772
683.9G

43772
1367.9G

43772
2735.8G

43772
5471.5G

43772
10943.0G

4 21756
21.2G

21756
42.5G

21756
85.0G

21756
170.0G

21756
339.9G

21756
679.9G

21756
1359.8G

21756
2719.5G

21756
5439.0G

8 10748
10.5G

10748
21.0G

10748
42.0G

10748
84.0G

10748
167.9G

10748
335.9G

10748
671.8G

10748
1343.5G

10748
2687.0G

16 5372
5.2G

5372
10.5G

5372
21.0G

5372
42.0G

5372
83.9G

5372
167.9G

5372
335.8G

5372
671.5G

5372
1343.0G

32 2556
2.5G

2556
5.0G

2556
10.0G

2556
20.0G

2556
39.9G

2556
79.9G

2556
159.8G

2556
319.5G

2556
639.0G

48 1788
1.7G

1788
3.5G

1788
7.0G

1788
14.0G

1788
27.9G

1788
55.9G

1788
111.8G

1788
223.5G

1788
447.0G

64 1276
1.2G

1276
2.5G

1276
5.0G

1276
10.0G

1276
19.9G

1276
39.9G

1276
79.8G

1276
159.5G

1276
319.0G

80 1020
1.0G

1020
2.0G

1020
4.0G

1020
8.0G

1020
15.9G

1020
31.9G

1020
63.8G

1020
127.5G

1020
255.0G

96 764
0.7G

764
1.5G

764
3.0G

764
6.0G

764
11.9G

764
23.9G

764
47.8G

764
95.5G

764
191.0G

112 764
0.7G

764
1.5G

764
3.0G

764
6.0G

764
11.9G

764
23.9G

764
47.8G

764
95.5G

764
191.0G

128 508
0.5G

508
1.0G

 508
2.0G

508
4.0G

508
7.9G

508
15.9G

508
31.8G

508
63.5G

508
127.0G

144 508
0.5G

508
1.0G

508
2.0G

508
4.0G

508
7.9G

508
15.9G

508
31.8G

508
63.5G

508
127.0G

160 508
0.5G

508
1.0G

508
2.0G

508
4.0G

508
7.9G

508
15.9G

508
31.8G

508
63.5G

508
127.0G

176 252
0.2G

252
0.5G

252
1.0G

252
2.0G

252
3.9G

252
7.9G

252
15.8G

252
31.5G

252
63.0G

192 252
0.2G

252
0.5G

252
1.0G

252
2.0G

252
3.9G

252
7.9G

252
15.8G

252
31.5G

252
63.0G

208 252
0.2G

252
0.5G

252
1.0G

252
2.0G

252
3.9G

252
7.9G

252
15.8G

252
31.5G

252
63.0G

224 252
0.2G

252
0.5G

252
1.0G

252
2.0G

252
3.9G

252
7.9G

252
15.8G

252
31.5G

252
63.0G

240 252
0.2G

252
0.5G

252
1.0G

252
2.0G

252
3.9G

252
7.9G

252
15.8G

252
31.5G

252
63.0G

PV
s/

V
G

 (v
gc

re
at

e
–p

 m
ax

_p
v)

255 252
0.2G

252
0.5G

252
1.0G

252
2.0G

252
3.9G

252
7.9G

252
15.8G

252
31.5G

252
63.0G

Chapter 16 LVM

September 2003 Chapter 16 / Page 12

Supported JFS (VxFS) file and file system sizes

HP-UX
Release

HP JFS
Version

Veritas
Disk Layout

Maximum
File Size

Maximum
File System Size

UX 10.01 JFS 2.0 Version 2 2 GB 4 GB

UX 10.10 JFS 2.0 Version 2 2 GB 128 GB

Version 2 2 GB 128 GB UX 10.20 JFS 3.0
Version 3 128GB 128 GB

Version 2 2 GB 128 GB JFS 3.1
Version 3 1 TB 1 TB
Version 2 2 GB 128 GB
Version 3 1 TB 1 TB

UX 11.00

JFS 3.3

Version 4 1 TB 1 TB

Version 2 2 GB 128 GB
Version 3 2 TB 2 TB

UX 11.11 JFS 3.3
JFS 3.5

Version 4 2 TB 2 TB

Bold font: Default disk layouts for particular HP-UX Release/JFS version.

NOTE: For UX 11.00 with disk layout version 3 PHKL_22719 (or newer) is needed to avoid mount
problems if extending or creating file systems beyond 128 GB.

NOTE: Although it may be possible to create files or file systems larger than these documented limits,
such files and file systems are not supported and the results of using them may be unpredictable.

Supported HFS file and file system sizes

HP-UX
Release

Maximum
File Size

Maximum
File System Size

UX 10.01 2 GB 4 GB
UX 10.10 2 GB 128 GB
UX 10.20 128 GB 128 GB
UX 11.00 128 GB 128 GB
UX 11.11 128 GB 128 GB

NOTE: As of UX 10.20 it is possible to exceed the 128 GB limit to 256 GB, but it is not supported.

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHKL_22719

Chapter 16 LVM

September 2003 Chapter 16 / Page 13

Display Commands

To display information about VGs, LVs or PVs there is a set of commands available. Each of
the commands provides an option -v to display detailed (verbos) output.

Information on VGs

vgdisplay -v vg01

--- Volume groups ---
VG Name /dev/vg01
VG Write Access read/write
VG Status available
Max LV 255
Cur LV 1
Open LV 1
Max PV 16
Cur PV 1
Act PV 1
Max PE per PV 1016
VGDA 2
PE Size (Mbytes) 4
Total PE 508
Alloc PE 508
Free PE 0
Total PVG 0
Total Spare PVs 0
Total Spare PVs in use 0

 --- Logical volumes ---
 LV Name /dev/vg01/lvol1
 LV Status available/syncd
 LV Size (Mbytes) 2032
 Current LE 508
 Allocated PE 508
 Used PV 1

 --- Physical volumes ---
 PV Name /dev/dsk/c10t6d0
 PV Status available
 Total PE 508
 Free PE 0
 Autoswitch On

vgdisplay is useful to check wether the LVM configuration in memory is clean or not. First of
all there should be no error messages. The status should be available or available/exclusive for
ServiceGuard VGs. Cur PV should equal Act PV and Cur LV should be equal to Open LV.

Information on PVs

pvdisplay -v /dev/dsk/c0t6d0 | more

--- Physical volumes ---

Chapter 16 LVM

September 2003 Chapter 16 / Page 14

PV Name /dev/dsk/c0t6d0
VG Name /dev/vg00
PV Status available
Allocatable yes
VGDA 2
Cur LV 9
PE Size (Mbytes) 4
Total PE 1023
Free PE 494
Allocated PE 529
Stale PE 0
IO Timeout (Seconds) default

--- Distribution of physical volume ---
LV Name LE of LV PE for LV
/dev/vg00/lvol1 25 25
/dev/vg00/lvol2 25 25
/dev/vg00/lvol3 50 50

--- Physical extents ---
PE Status LV LE
0000 current /dev/vg00/lvol1 0000
0001 current /dev/vg00/lvol1 0001
0002 current /dev/vg00/lvol1 0002
.
.
1021 free 0000
1022 free 0000

Stale PE should be 0.

Information on LVs

lvdisplay -v /dev/vg00/lvol1 | more

--- Logical volumes ---
LV Name /dev/vg00/lvol1
VG Name /dev/vg00
LV Permission read/write
LV Status available/syncd
Mirror copies 0
Consistency Recovery MWC
Schedule parallel
LV Size (Mbytes) 100
Current LE 25
Allocated PE 25
Stripes 0
Stripe Size (Kbytes) 0
Bad block off
Allocation strict/contiguous

--- Distribution of logical volume ---
PV Name LE on PV PE on PV
/dev/dsk/c0t6d0 25 25

--- Logical extents ---
LE PV1 PE1 Status 1
0000 /dev/dsk/c0t6d0 0000 current
0001 /dev/dsk/c0t6d0 0001 current
0002 /dev/dsk/c0t6d0 0002 current

Chapter 16 LVM

September 2003 Chapter 16 / Page 15

...

None of the LEs/PEs should have a stale status.

LVM Basic Functionality

Adding a new PV / VG / LV

Adding a new PV
A disk has to be initialized before LVM can use it. The pvcreate command writes the PVRA
to the disk and such a disk is called a PV:

pvcreate /dev/rdsk/c0t5d0

If there is a valid PVRA already on the disk (it could have been used wit LVM before) you
will get the following error message:

pvcreate: The Physical Volume already belongs to a Volume Group

If you are sure the disk is free you can force the initialization using the -f option:
pvcreate -f /dev/rdsk/c0t5d0

NOTE: For bootable disks you have to use the -B option additionally. This preserves the fixed 2912KB space
for the LVM header (see section LVM structural information). You can find the procedure how to make a
disk bootable in the section Mirroring the root disk later in this chapter.

To add the PV to an existing VG do:

vgextend vg01 /dev/dsk/c0t5d0
vgdisplay -v vg01

Adding a new VG
Here’s how to create a new VG with 2 disks:

1) initialize the disk if not yet done:
pvcreate [-f] /dev/rdsk/c0t5d0
pvcreate [-f] /dev/rdsk/c0t6d0

2) select a unique minor number for the VG:

ll /dev/*/group
crw-r--r-- 1 root sys 64 0x000000 Apr 4 2001 /dev/vg00/group
crw-r--r-- 1 root sys 64 0x010000 Oct 26 15:52 /dev/vg01/group
crw-r--r-- 1 root sys 64 0x020000 Aug 2 15:49 /dev/vgsap/group

3) create the VG control file (group file):
mkdir /dev/vgnew
mknod /dev/vgnew/group c 64 0x030000

NOTE: Starting with LVM commands patch PHCO_24645 (UX 11.00) or PHCO_25814 (UX 11.11)
vgcreate and vgimport will check for the uniqueness of the group file's minor number.

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_24645
http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_25814

Chapter 16 LVM

September 2003 Chapter 16 / Page 16

4) create and display the VG:
vgcreate vgnew /dev/dsk/c0t5d0 /dev/dsk/c0t6d0
vgdisplay -v vgnew

NOTE: One of the VG’s parameters is max_pe, i.e the maximum number of physical extents this VG can

handle per disk. The default value is 1016. Multiplying this with the default PE size of 4MB results in
approx. 4GB disk space that can be handled by this VG. Adding a larger disk to this VG later is not possible.
Believe me - there are absolutely no options to do this other than vgcreate! Anyway - vgcreate automatically
adjusts max_pe in order be able to handle the largest PV given in the arguments. Its always a good idea to set
max_pe explicitely to a value large enough to allow for future expansions. This can be done with the -e
option of vgcreate.

Adding a new LV
The following creates a 500MB large LV named lvdata on any disk(s) of the VG vg01:

lvcreate -n lvdata -L 500 vg01

You cannot specify a PV with lvcreate. If you like to place the LV on a specific PV, then first
create an LV of 0MB. It has no extents - it just exists.

lvcreate -n lvdata vg01

Now extend the LV onto a certain disk:
lvextend -L 500 /dev/vg01/lvdata /dev/dsk/c4t2d0

Now you can use newfs to put a FS onto the LV:
newfs -F <fstype> /dev/vg01/rlvdata

where fstype is either hfs or vxfs.

NOTE: Nowadays it is recommended to use a VxFS (=JFS) file system.

Modifying a PV / VG / LV

Modifying a PV
There are certain PV parameters that can be changed (see pvchange man
page). A frequently used parameter is the IO timeout parameter. This
parameter tells LVM how long to wait for disk transactions to complete
before taking the device offline. This is accompanied by POWERFAILED
messages on the console. Certain disk arrays need a higher timeout value
than simple disks. To specify e.g. a timeout of 120 seconds do:

pvchange -t 120 /dev/dsk/cXtXdX

The device driver’s default is usually 30 seconds. Setting the IO timeout to 0 seconds restores
this default:

pvchange -t 0 /dev/dsk/cXtXdX

Modifying a LV
The most common modifiaction task is the modification of the size of a LV. To increase a LV
from 500MB to 800MB do:

Chapter 16 LVM

September 2003 Chapter 16 / Page 17

lvextend -L 800 /dev/vg01/lvdata [/dev/dsk/c5t0d0]

NOTE: You may get the following error:

lvextend: Not enough free physical extents available.
Logical volume "/dev/vg01/lvdata" could not be extended.
Failure possibly caused by contiguous allocation policy.
Failure possibly caused by strict allocation policy

The reason for that is exactly one of the above.

If the LV has been extended successfully you need to increase the FS that resides on that LV:

Without OnlineJFS you have to umount the FS first:

umount /dev/vg01/lvdata
extendfs /dev/vg01/rlvdata
mount /dev/vg01/lvdata <mountpoint>

With OnlineJFS you do not need to umount. Use fsadm instead:
fsadm -b <new size in KB> <mountpoint>

NOTE: Reducing a LV without OnlineJFS is not possible. You have to backup the data, remove and recreate

the LV, create a new FS and restore the data from the backup into that FS.

With OnlineJFS you can try to reduce the FS using fsadm specifying the new size in KB. Due
to some design limitations this often fails with JFS 3.1 and older. After fsadm successfully
reduced the FS you can use lvreduce to reduce the underlying LV:

lvreduce -L <new size in MB> /dev/vg01/lvdata

For details regarding JFS and OnlineJFS consult the JFS Chapter.

To change the name of a LV you can simply rename the LV devicefiles:

umount /dev/vg01/lvol1
mv /dev/vg01/lvol1 /dev/vg01/lvdata
mv /dev/vg01/rlvol1 /dev/vg01/rlvdata
mount /dev/vg01/lvdata <mountpoint>

There are several other characteristics of an LV that can be modified. Most commonly used
are allocation policy, bad block relocation and LV IO-timeout. For details look at the
lvchange man page.

Modifying a VG
The vgchange command can be used to (de)activate a VG. Certain parameters like max_pe
(see above) cannot be changed without recreating the VG.

In order to rename a VG you have to export and re-import it:

umount /dev/vg01/lvol1
umount /dev/vg01/lvol2
...

Chapter 16 LVM

September 2003 Chapter 16 / Page 18

vgchange -a n vg01
vgexport -m /tmp/mapfile vg01
ll /dev/*/group (choose a unique minor no.)
mkdir /dev/vgnew
mknod /dev/vgnew/group c 64 0x010000
vgimport -m /tmp/mapfile vgnew /dev/dsk/c4t0d0 /dev/dsk/c5t0d0 ...

NOTE: If you are dealing with a large amount of disks i recommend to use the “-f outfile” option with
vgexport and vgimport. See section Importing and exporting VGs for details.

NOTE: Starting with LVM commands patch PHCO_24645 (UX 11.00) or PHCO_25814 (UX 11.11)
vgcreate and vgimport will check for the uniqueness of the group file's minor number.

vgcfgbackup vgnew

For details regarding vgchange look at the man page. vgexport/vgimport is described below in
greater detail.

Removing a PV / VG / LV

Remove an LV
umount /data
lvremove /dev/vg01/lvsap

Remove a PV from a VG
vgreduce vg01 /dev/dsk/c5t0d0

Remove a VG
umount any LV of this VG, deactivate and export it:

umount /dev/vg01/lvol1
umount /dev/vg01/lvol2
...

vgchange -a n vg01
vgexport vg01

NOTE: vgremove is not recommended because you need to remove all LVs and PVs from the VG before you

could use vgremove. This is not necessary with vgexport. Additionally vgexport leaves the LVM structures
on the disks untouched which could be an advantage if you like to re-import the VG later.

Moving physical extents

It is only possible to move PEs within a VG. In order to move data across VGs you need to
use commands like dd, cp, mv, tar, cpio, ...
There is a command available that allows you to move LVs or certain extents of a LV from
one PV to another - pvmove(1M). It is usually used to “free” a PV, i.e. to move all LVs from
that PV in order to remove it from the VG. There are several forms of usage:

In order to move all PEs from c0t1d0 to the PVs c0t2d0 and c0t3d0:

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_24645
http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_25814

Chapter 16 LVM

September 2003 Chapter 16 / Page 19

pvmove /dev/dsk/c0t1d0 /dev/dsk/c0t2d0 /dev/dsk/c0t3d0

In order to move all PEs of lvol4 that are located on PV c0t1d0 to PV c1t2d0:

pvmove -n /dev/vg01/lvol4 /dev/dsk/c0t1d0 /dev/dsk/c0t2d0

ATTENTION: pvmove is not an atomic operation. Furthermore the command moves data extent by extent and

is easily interruptable. If this happens, then the configuration is left in some weird inconsistent state showing
an additional pseudo mirror copy for the extents in question. This can be cleaned up only using the lvreduce
command (Use lvreduce -m 0 LV if the LVs were unmirrored and lvreduce -m 1 LV if they were mirrored
before starting the pvmove; there’s no need to specify a PV here).

If MirrorDisk/UX is installed it is usually saver and faster to use mirroring as an alternative to
pvmove. In order to move lvol4 from PV c0t1d0 to c0t2d0 just mirror it to c0t2d0 and remove
the mirror from c0t1d0 afterwards:

lvextend -m 1 /dev/vg01/lvol4 /dev/dsk/c0t2d0
lvreduce -m 0 /dev/vg01/lvol4 /dev/dsk/c0t1d0

Importing and exporting VGs

The functionality of exporting VGs allows you to remove all data concerning a dedicated VG
from the system without touching the data on the disks. The disks of an exported VG can be
physically moved to another system and the VG can be imported there. Exporting a VG
means the following: remove the VG and corresponding PV entries from /etc/lvmtab and
remove the VG directory with their device files in /dev. Again - the data on the disks is left
unchanged.
Since the structural layout of the LVM information on disk has not changed throughout the
HP-UX releases you can import a VG that has been created on a UX 10.20 system e.g. on a
UX 11.11 system.

vgexport has a -m option to create a so called mapfile. This ascii file simply contains the LV
names because they are not stored on the disks. You need a mapfile if you do not have the
standard names for the LV device files (lvol1, lvol2, ...).

Here’s the procedure to export a VG on system A and import it on system B:

on system A:
Umount all LVs that belong to the VG and deactivate it:

vgchange -a n vgXX

Export the VG:
vgexport -v -m /tmp/vgXX.map vgXX

Now all information about vgXX has been removed from system A. The disks can now be
moved to system B and the VG can be imported there:

on system B:
Create the directory for the LV device files and the group file. It is important to choose a
minor number that is unique on system B.

Chapter 16 LVM

September 2003 Chapter 16 / Page 20

ll /dev/*/group
mkdir /dev/vgXX (you could also choose another VG name)
mknod /dev/vgXX/group c 64 0xXX0000

NOTE: Starting with LVM commands patch PHCO_24645 (UX 11.00) or PHCO_25814 (UX 11.11)
vgcreate and vgimport will check for the uniqueness of the group file's minor number.

Now copy the mapfile from system A and import the VG:

vgimport -v vgXX -m /tmp/vgXX.map /dev/dsk/c1t0d0 /dev/dsk/c1t1d0

NOTE: The PV device files may be different on system B compared to system A.

If you have a bunch of disks in the VG you may not want to specify each of them within the
argument list of vgimport. Using the -s option with vgexport/vgimport lets you get around
this:

vgexport -v -s -m /tmp/vgXX.map vgXX

If you specify -s in conjunction with the -m option vgexport simply adds the VG-ID to the
mapfile:

cat /tmp/vgXX.map
VGID bfb13ce63a7c07c4
1 lvol1
2 lvol2
3 lvsap
4 lvdata

When using the -s option with the vgimport command on system B all disks that are
connected to the system are scanned one after another. If the VG-ID listed in the mapfile is
found on the header of a disk this disk is included automatically into the VG
Here’s the appropriate vgimport command:

vgimport -v -s -m /tmp/vgXX.map vgXX

So you do not have to specify the PVs anymore.

ATTENTION: On systems using data replication products like BusinessCopy/XP, ContinousAccess/XP, EMC

SRDF or EMC Timefinder it may be impossible to reliably identify the correct list of PVs using this VG-ID
mechanism. You should specify the list of PVs explicitely here. The newly introduced –f option for vgimport
helps to specify large PV lists on the command line (see man page). The -f Option is only available as of UX
11.X. For UX 11.00 you need LVM commands patch PHCO_20870 or later.

MirrorDisk/UX

Basic functionality

To be able to mirror LVs you need to purchase the product MirrorDisk/UX. Its important to
remember that LVs are mirrored - not PVs. Especially the LVM header is not mirrored
because it does not belong to the LV. You can have 1 or 2 mirror copies.

Here’s how to mirror an existing LV to a specific PV:

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_24645
http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_25814
http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=20870

Chapter 16 LVM

September 2003 Chapter 16 / Page 21

lvextend -m 1 /dev/vg01/lvol1 /dev/dsk/c1t0d0

NOTE: lvextend allows either to specify the size of a LV (-L or -l) OR the number of mirror

copies (-m). You cannot specify both within one command.

lvdisplay shows a mirrored LV like this:
lvdisplay -v /dev/vg01/lvol1 | more
...
...
--- Logical extents ---
LE PV1 PE1 Status 1 LE PV2 PE2 Status 2
0000 /dev/dsk/c0t6d0 0000 current 0000 /dev/dsk/c1t6d0 0000 current
0001 /dev/dsk/c0t6d0 0001 current 0001 /dev/dsk/c1t6d0 0001 current
...

To reduce the mirror (from PV c1t6d0):
lvreduce –m 0 /dev/vg01/lvol1 /dev/dsk/c1t6d0

ATTENTION: If the LV uses the distributed allocation policy (aka extent based striping) you need to specify

all PVs that you want to remove the mirror copy from. There is not (yet) an option that lets you specify the
PVG as argument to lvreduce but there will be a LVM commands patch (maybe mid 2002). To check if the
LV uses distributed allocation policy:
lvdisplay /dev/vgXX/lvXX | grep Allocation

should show “distributed”.

NOTE: Extending a mirrored LV works exactly like extending a non-mirrored LV. lvextend enlarges both

mirror copies. The LV allocation policies strict or PVG-strict ensure that the mirrors reside on independent
disks or PVGs respectively.

Physical Volume Groups - PVGs

If there are multiple host bus adapters (SCSI or fibre channel) available on the system it is
useful in terms of high availablility to have mirror copies located on different adapters. The
strict allocation policy for mirrored LVs guarantees that the mirror copy will not be placed on
the same disk but it could be placed on a disk that is on the same adapter. The latter case can
be avoided by using physical volume groups. A PVG is a subset of PVs within a VG that can
be defined using -p option of vgcreate/vgextend or simply by creating an ascii file called
/etc/lvmpvg.
Here’s an example configuration:

pvg_b

 c0t1d0

pvg_a

host

vg01

c0

c1

c0t2d0

c1t4d0 c1t5d0

Chapter 16 LVM

September 2003 Chapter 16 / Page 22

If you want to be sure that the mirrors of LVs on e.g. c0t1d0 are not placed on c0t2d0 you
need a lvmpvg file like the following:

cat /etc/lvmpvg
VG /dev/vg01
PVG pvg_a
/dev/dsk/c0t1d0
/dev/dsk/c0t2d0
PVG pvg_b
/dev/dsk/c1t4d0
/dev/dsk/c1t5d0

As soon as this file is saved the configuration is active and vgdisplay will look like this:
vgdisplay -v vg01
...
...
--- Physical volume groups ---
PVG Name pvg_a
PV Name /dev/dsk/c0t1d0
PV Name /dev/dsk/c0t2d0

PVG Name pvg_b
PV Name /dev/dsk/c1t4d0
PV Name /dev/dsk/c1t5d0

Before mirroring a LV you need to set it’s allocation policy to PVG-strict, e.g:
lvchange -s g /dev/vg01/lvol1

lvdisplay /dev/vg01/lvol1 | grep Allocation
Allocation PVG-strict

For details look at the lvmpvg man page.

Root Mirror

To set up a mirrored root config you need to add an additional disk (e.g. c1t6d0) to the root
VG mirror all the LVs and make it bootable.

1. Initialize the disk and add it to vg00:

pvcreate [-f] -B /dev/rdsk/c1t6d0
vgextend vg00 /dev/dsk/c1t6d0

2. Mirror the LVs using lvextend:

lvextend –m 1 /dev/vg00/lvolX /dev/dsk/c1t6d0

If you want to use a shell loop to extend automatically, use e.g.:
for lvol in lvol1 lvol2 ... lvol8 (specify any LV you need to mirror)
> do
> lvextend -m 1 /dev/vg00/$lvol /dev/dsk/c1t6d0
> done

3. Important: Configure LIF/BDRA, according to the LIF/BDRA Configuration
Procedure at the end of this chapter.

Chapter 16 LVM

September 2003 Chapter 16 / Page 23

4. Specify the mirror disk as alternate boot path in stable storage:

setboot –a <HW-Path of mirror>

To determine the hardware path use e.g. ioscan:

ioscan -fnk /dev/dsk/c1t6d0
Class I H/W Path Driver S/W State H/W Type Description
===
disk 0 0/0/2/0.6.0 sdisk CLAIMED DEVICE SEAGATE ST39102LC
 /dev/dsk/c1t6d0 /dev/rdsk/c1t6d0

setboot –a 0/0/2/0.6.0

5. Add the new mirror boot device to /stand/bootconf, e.g.:

l /dev/dsk/c0t6d0 (original boot device)
l /dev/dsk/c1t6d0 (new mirror boot device)

If you like to remove the mirror again, you need to use lvreduce:

lvreduce -m 0 /dev/vg00/lvolX /dev/dsk/c1t6d0

Of course, this can also be done automatically using a shell loop, e.g.:
for lvol in lvol8 lvol7 ... lvol1 (specify all LVs you need to reduce)
> do
> lvreduce -m 0 /dev/vg00/$lvol /dev/dsk/c1t6d0
> done

PV Links (Alternate Paths)

Physical Volume Links (aka PV Links or Alternate Links) are a High Availability Feature of
LVM which allows to configure multiple links (HW paths) to the same PV for redundancy.
One of them is considered as the primary link while the others act as alternate links. If LVM
detects the primary link beeing unavailable as a consequence of a failure (e.g. of a SCSI/FC
card/cable) it re-routes IO traffic to the first available alternate link.

NOTE: It is the order in /etc/lvmtab that defines the default order in which the links are used.

Configuring PV Links

The following example shows how to create a VG with a disk having an alternate link. First
check the available disk devices using ioscan:

ioscan -fnkCdisk | more
Class I H/W Path Driver S/W State H/W Type Description
===
disk 0 0/0/2/0.6.0 sdisk CLAIMED DEVICE SEAGATE ST39102LC
 /dev/dsk/c1t6d0 /dev/rdsk/c1t6d0

Chapter 16 LVM

September 2003 Chapter 16 / Page 24

disk 1 0/0/2/1.6.0 sdisk CLAIMED DEVICE SEAGATE ST39102LC
 /dev/dsk/c2t6d0 /dev/rdsk/c2t6d0
disk 2 0/12/0/0.0.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
 /dev/dsk/c4t0d0 /dev/rdsk/c4t0d0
disk 3 0/12/0/0.1.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
 /dev/dsk/c4t1d0 /dev/rdsk/c4t1d0
disk 13 0/12/0/0.2.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
 /dev/dsk/c4t2d0 /dev/rdsk/c4t2d0
disk 6 0/12/0/1.0.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
 /dev/dsk/c5t0d0 /dev/rdsk/c5t0d0
disk 7 0/12/0/1.1.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
 /dev/dsk/c5t1d0 /dev/rdsk/c5t1d0
disk 12 0/12/0/1.2.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
 /dev/dsk/c5t2d0 /dev/rdsk/c5t2d0
disk 19 0/12/0/1.3.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
...
...

From cabling or cmpdisks utility (see below) we know that c4t1d0 and c5t1d0 identify the
same disk.

Extend vg01 using one of the device files:

pvcreate [-f] /dev/rdsk/c4t1d0
vgextend vg01 /dev/dsk/c4t1d0

NOTE: Do not run pvcreate on the other devicefile. Remember that it points to the same disk and this disk has
already been pvcreated.

This is how vgdisplay and pvdisplay report alternate links:

vgdisplay -v vg01
...
...
 --- Physical volumes ---
 PV Name /dev/dsk/c4t0d0
 PV Name /dev/dsk/c5t0d0 Alternate Link
 PV Status available
 Total PE 542
 Free PE 99
 Autoswitch On

 PV Name /dev/dsk/c4t1d0
 PV Name /dev/dsk/c5t1d0 Alternate Link
 PV Status available
 Total PE 542
 Free PE 0
 Autoswitch On

pvdisplay /dev/dsk/c4t1d0
--- Physical volumes ---
PV Name /dev/dsk/c4t1d0
PV Name /dev/dsk/c5t1d0 Alternate Link
VG Name /dev/vg01
PV Status available
Allocatable yes
VGDA 2
Cur LV 2
PE Size (Mbytes) 32

Chapter 16 LVM

September 2003 Chapter 16 / Page 25

Total PE 542
Free PE 0
Allocated PE 542
Stale PE 0
IO Timeout (Seconds) default
Autoswitch On

IO Timeout: The time that LVM retrys a link failed link is called PV timeout and can be
specified using pvchange:
pvchange -t 120 /dev/dsk/cXtXdX

sets the timeout to 2 minutes. The default is 0, which causes LVM to use the device
driver’s default (usually 30 sec).

Autoswitch: With autoswitch flag on (default) LVM always switches back to the primary

link if it becomes available again. Otherwise the same link is used until the next failure.

Changing PV Link order

To make an alternate link become the primary link (manual switch) use pvchange:
pvchange -s <alternate>

To change it permanently (across VG deacivation/reactivation) you have to change the order
in /etc/lvmtab:

vgreduce vg01 <primary>
Device file path "/dev/dsk/c0t1d0" is a primary link. Removing
primary link and switching to an alternate link.

vgextend vg01 <primary>

Utility cmpdisks

cmpdisks is an unofficial shell script that collects information about all disks that can be seen
on a system. It displays a sorted list of disks and their corresponding HW paths. cmpdisks
works across multiple systems and is therefore very useful for ServiceGuard environments. It
recognizes LVM and VxVM devices, also on Itanium systems.

Here’s an example output for two nodes connected to shared storage:

cmpdisks hprtdd32 grcdg319

Scanning host hprtdd32
Scanning host grcdg319

***** LVM-VG: 0557706517-0986307905
1 hprtdd32:c2t0d0 0557706517-0986307878 0/0/2/0.0.0 SEAGATE/ST39103LC (0x00/vg00)

***** LVM-VG: 0630309352-0976295069
1 grcdg319:c2t6d0 0630309352-0976295068 0/0/2/1.6.0 SEAGATE/ST39102LC (0x00/vg00)

***** LVM-VG: 0557706517-0986205681
1 grcdg319:c4t1d0 0630309352-0968061502 0/12/0/0.1.0 HP/C5447A (0x02/vgsap)

Chapter 16 LVM

September 2003 Chapter 16 / Page 26

 grcdg319:c5t1d0 0630309352-0968061502 0/12/0/1.1.0 HP/C5447A (0x02/vgsap)
 hprtdd32:c4t1d0 0630309352-0968061502 0/6/0/0.1.0 HP/C5447A (0x02/vgsap)
 hprtdd32:c5t1d0 0630309352-0968061502 0/6/0/1.1.0 HP/C5447A (0x02/vgsap)
2 grcdg319:c4t0d0 0630309352-0968061503 0/12/0/0.0.0 HP/C5447A (0x02/vgsap)
 grcdg319:c5t0d0 0630309352-0968061503 0/12/0/1.0.0 HP/C5447A (0x02/vgsap)
 hprtdd32:c4t0d0 0630309352-0968061503 0/6/0/0.0.0 HP/C5447A (0x02/vgsap)
 hprtdd32:c5t0d0 0630309352-0968061503 0/6/0/1.0.0 HP/C5447A (0x02/vgsap)

***** LVM-VG: 0630309352-1002790984
1 grcdg319:c4t2d0 0630309352-1002790983 0/12/0/0.2.0 HP/C5447A (n/a)
 hprtdd32:c4t2d0 0630309352-1002790983 0/6/0/0.2.0 HP/C5447A (n/a)

In the output above you can see:

• One non-shared disk in vg00 for each node.
• Two shared disks, each having one alternate link in shared VG vgsap on each node.
• One shared disk without alternate link that is not part of a VG.

Offline Diagnostic Environment (ODE)

You need the ODE to be able to do HW troubleshouting in the case the system is not able to
boot. The ODE files are LIF files that should be installed in the LIF volume on any bootable
disk.

With Diagnostics installed (check with swlist OnlineDiag or simply type sysdiag) you
can find the ODE files in a regular file:

lifls -l /usr/sbin/diag/lif/updatediaglif2
volume OFFLIN data size 67748 directory size 8
filename type start size implement created
===
ODE -12960 16 848 0 00/10/24 11:32:30
MAPFILE -12277 864 128 0 00/10/24 11:32:30
SYSLIB -12280 992 353 0 00/10/24 11:32:30
CONFIGDATA -12278 1352 218 0 00/10/24 11:32:30
SLMOD2 -12276 1576 140 0 00/10/24 11:32:30
SLDEV2 -12276 1720 134 0 00/10/24 11:32:30
SLDRV2 -12276 1856 168 0 00/10/24 11:32:30
SLSCSI2 -12276 2024 116 0 00/10/24 11:32:30
MAPPER2 -12279 2144 142 0 00/10/24 11:32:30
IOTEST2 -12279 2288 89 0 00/10/24 11:32:30
PERFVER2 -12279 2384 125 0 00/10/24 11:32:30
PVCU -12801 2512 64 0 00/10/24 11:32:30
SSINFO -12286 2576 2 0 00/10/24 11:32:30

ATTENTION: The file updatediaglif2 is only for pure 64bit systems (e.g. N-Class). For 32bit systems or
systems that support both CPU types (e.g. K-Class) use the file updatediaglif.

The Online Diagnostics bundle can be found on the Support Plus Media. You can write the
ODE files to the LIF volume as follows:
cd /usr/sbin/diag/lif

getconf HW_CPU_SUPP_BITS (the result is either 32, 32/64 or 64)

Chapter 16 LVM

September 2003 Chapter 16 / Page 27

mkboot -b updatediaglif -p ISL -p AUTO -p HPUX -p LABEL
 /dev/rdsk/cXtXdX (if 32 or 32/64)
mkboot -b updatediaglif2 -p ISL -p AUTO -p HPUX -p LABEL
 /dev/rdsk/cXtXdX (if 64)
(the -p option preserves the specified file so that it is not overwritten)

If you are setting up a mirrored root config you need to install the ODE files also on the
mirror disk else you don’t have ODE utilities like MAPPER2 if you booted there.

LVM and MC/ServiceGuard (Cluster LVM)

In a ServiceGuard environment you have one or more VGs that have disks on the shared bus
which can be accessed from multiple systems in the cluster. So it is very important to
guarantee that a VG is active only on one node at a time or you will easily end up with
inconsistant or corrupted data.

A VG that should be accessable from multiple nodes needs special treatment. You have to
ensure that each node has current information about the VG, i.e:

• /etc/lvmtab
• /dev/vgXX/*
• /etc/lvmconf/vgXX.conf

Any changes to the VG that would affect these files need to be updated to all other nodes that
could potentially activate the VG.

The following table shows which configuration changes affect which files:

affects configuration change /etc/lvmtab /dev/vgXX/ /etc/lvmconf/
adding/removing a PV from the VG Yes No Yes
adding/removing a LV from the VG No Yes Yes
changing LV/PV characteristics (like size) No No Yes

Example: Adding a disk to a cluster VG

• On the node where the VG is activated:

1. Add the PV to the VG as usual:

pvcreate [-f] /dev/rdsk/cXtXdX
vgextend vgXX /dev/dsk/cXtXdX

2. Generate a map file:

vgexport -p -s -m /tmp/vgXX.map vgXX

3. Use ftp or rcp to distribute the mapfile (/tmp/vgXX.map) to the other nodes.

Chapter 16 LVM

September 2003 Chapter 16 / Page 28

• On all other nodes where the VG is not activated:

1. Remember the VG minor number:

ll /dev/vgXX/group

2. If the VG does already exist, export it first and then import it:

vgexport vgXX
mknod /dev/vgXX/group c 64 0xXX0000
vgimport -s -m /tmp/vgXX.map vgXX

NOTE: You may also use the “-f outfile” option of vgexport/vgimport where outfile contains a list
of all devicefiles belonging to the VG. See section Importing and exporting VGs for details.

3. Backup the LVM configuration:

vgchange -a r vgXX
vgcfgbackup vgXX
vgchange -a n vgXX

See the ServiceGuard Chapter for details.

Replacing a Failed LVM Disk

In order to replace a failed disk you have to recover the original LVM header onto the new
media. The command vgcfgrestore(1M) recovers the backup of the LVM header from the
file system (/etc/lvmconf/vgXX.conf) to the disk. If data was mirrored you can easily sync
it to the new disk. Otherwise you need to figure out which LVs have extents residing on that
disk and recover the data from your backup.

NOTE: The replacement disk must be the same product ID as the replaced one. HP often uses different

manufacturers for disks having the same product number. The hotswap procedures will not update the disk
driver's internal information to that of the replaced disk. The replacement disk will have the same capacity
and blocksize as the defective disk because they have the same product number. The only field that could be
incorrect is the string specifying the vendor's name. This will not affect the behavior of the LVM. If it is
desired to update the manufacturers' name, then the disk's volume group must be deactivated and reactivated.

Replacing a disk in a ServiceGuard environment makes no real difference. Even replacing a
cluster lock disk is no problem, since the LVM configuration backup contains all needed
information about it. This is true as long as vgcfgbackup was run after configuring the cluster.
Consult the ServiceGuard Chapter if you are unsure.

ATTENTION: If this is an Itanium system (UX 11.20, UX 11.22, UX 11.23) you need to take care of the new

disk partitioned layout. The first partition (cXtXdXs1) contains the EFI (100MB). The former LVM disk is
now located at partition 2 of the disk (cXtXdXs2). For details on how to replace an Itanium root disk refer to
the Itanium Chapter.

Chapter 16 LVM

September 2003 Chapter 16 / Page 29

Identifying the failed disk

First of all you have to figure out which disk actually failed. Do not rely on the output of
LVM’s display commands only! Especially in mirrored configurations you have to be very
careful.

Here are some approaches how to check for typical symptoms of failed disks.

• Use the ioscan(1M) command (ioscan –fCdisk) to have a look at the disk’s S/W
state. Only disks in state CLAIMED are currently accessible by the system. Disks in
other states like NO_HW are of course suspicious. This is also true for disks that are
completely missing in ioscan’s result. If the disk is CLAIMED then at least its contoller
is responding.

• The next step could be a test with diskinfo(1M) (diskinfo /dev/rdsk/cXtXdX). The
reported size must be >0, otherwise the device is not ready for some reason.

• Although being more time consuming, trying to read the disk with dd(1) completely
(dd if=/dev/rdsk/cXtXdX of=/dev/null bs=256K) or partially (dd
if=/dev/rdsk/cXtXdX of=/dev/null bs=256K count=100) is also a useful
indicator. No I/O errors must be reported here.

• Use hardware diagnostic tools (like MESA diagnostics, mstm/cstm commands) to get
detailed diagnostic information about the disk. These tools offer the most conclusive
information.

Last, but not least, You must be sure about what disk is the defective one! Starting any
replacement procedure based on wrong assumptions can cause loss and corruption of data.

Disk Replacement Flow Chart

The following flow chart is supposed to provide an overview about possible LVM disk
replacement scenarios. The procedures for the most important case in HA environments (hot-
swappable and mirrored) are presented in detail later (Hot-Swap Procedure for Attached
Physical Volumes, Hot-Swap Procedure for Unattached Physical Volumes).

Chapter 16 LVM

September 2003 Chapter 16 / Page 30

Shutdown
Power off

Replace Disk

Hot
swappable

?

Root Disk
?

Boot
normally

BCH> boot pri
ISL> hpux -lq

Mirrored
?

Synchronize
Mirrors

vgsync vgXX

PV
attached

?

Mirrored
?

Try to close all
affected LVs

- halt applications
fuser -kc /mnt
umount /mnt
may hang, if disk is
unresponsive!

Gather all required information
e.g.:
- What PV is to be replaced?
- Is the PV hot-swappable?
- What LVs are affected?
- What’s their layout? Are they mirrored?
- Is the PV a root disk / part of the root VG?

Close all
affected LVs

e.g. kill remaining
processes, umount
fuser -kc /mnt
umount /mnt

no

no

yes

no

yes

no

yes

no

yes

Hot-Swap
Procedure for
Unattached

Physical
Volumes

lvreduce of mirrors
not required

Hot-Swap
Procedure for

Attached
Physical
Volumes

lvreduce of mirrors
required

A PV is considered to be
attached, if pvdisplay is
able to report a valid status
(unavailable/available) for
it. Otherwise it’s
unattached.

Restore LVM Header
Re-attach PV

vgcfgrestore -n vgXX
 /dev/rdsk/cXtXdX
vgchange -a y vgXX

Replace Disk

then check if disk is
accessible:
ioscan -f

Restore Header
Attach PV

vgcfgrestore -n vgXX
 /dev/rdsk/cXtXdX
vgchange -a y vgXX

LIF/ BDRA
config. procedure

Data Recovery
e.g.:
newfs -F vxfs /dev/vgXX/rlvolX
mount /dev/vgXX/lvolX /mnt

restore data, e.g using frecover from tape:
frecover -v -f /dev/rmt/1m -i /mnt

Mirrored
?

Boot
from Mirror

BCH> boot alt
ISL> hpux -lq

Ignite/UX
Recovery

Recover from a
Recovery Tape or

Ignite Server

yes

yes

no

no

yesRoot Disk
?

Chapter 16 LVM

September 2003 Chapter 16 / Page 31

Hot-Swap Procedure for Attached Physical Volumes
NOTE: A physical volume is considered to be attached, if the pvdisplay command is able to report a valid status

(unavailable/available) for it. Otherwise it’s called unattached.

ATTENTION: As of today (HP-UX 11.23) the offical replacement procedure stipulates to reduce mirror copies

from attached PVs before performing the actual replacement. However, there are other (unofficial)
cookbooks allowing the replacement without this safety measure.
In this LVM chapter we only consider the official procedure to be supported. The reason is that there are
potentially serious problems with replacing an attached device. Although the pvdisplay indicates the device is
unavailable, LVM could still be trying to recover it. There is a possibility that a device that pvdisplay shows
to be unavailable one moment could immediately appear to be available again just as the new device is being
initialized in-place with vgcfgrestore. The consequences can be data corruption or obscure problems that can
be difficult to track down, due to the LVM metadata on the device being improperly written.
A seemingly plausable but also unsupported solution to this problem is to initialize (vgcfgrestore) the
replacement disk in a different location (e.g. an unused slot in the storage system). Then replace the
unavailable disk with the new one. This will work safely as long as LVM recognizes that the device is
unavailable before the disk is replaced.

Follow these steps to replace a hot-swap disk module for attached Physical Volumes, which
means that the disk was defective/unaccessible at the time the volume group was activated.
Hot-swapping a disk which was defective during activation (unattached) requires a different
sequence of commands. Skip to the alternative procedure, Hot-Swap Procedure for
Unattached Physical Volumes.

1. Reduce any logical volumes that have mirror copies on the faulty disk so that they no
longer mirror onto that disk.

NOTE: Be advised to check first, what LVs have mirror extents allocated on the faulty disk (to be

checked with pvdisplay –v /dev/dsk/cXtXdX). Then you should check for each found LV how it is
mirrored (use lvdisplay –v /dev/vgXX/lvolX). If the mirror extents span more than one PV then it is
highly recommended to specifiy all PVs with the lvreduce command that are in the “same mirror set
of disks” as the faulty one. Otherwise LVM may pick the “wrong” disks for reduction, leading to
undesired results (e.g. asymmetrical layouts). Take a note of this PV list, since you need this
information later when you re-establish the mirror using lvextend.

lvreduce -m 0 -A n /dev/vgXX/lvolX <list of PVs> (for 1 way mirroring)
or
lvreduce -m 1 -A n /dev/vgXX/lvolX <list of PVs> (for 2 way mirroring)

where list of PVs is the the list of devices determined according to the note above. We
use the –A n option to prevent the lvreduce command from performing an automaticic
vgcfgbackup operation, which is likely to get stuck on accessing a defective disk.

2. Replace the faulty disk. Please refer to the appropriate administration guide for
instructions on how to replace the disk.

Do an ioscan on the replaced disk to insure that it is accessible (CLAIMED) and also as a
double check that it is a proper replacement (see note above).

ioscan -f /dev/dsk/cXtXdX

3. For fibre channel disks perform the replace_dsk steps described in the section “How
to Replace Disks at Hosts with TachLite HBAs” in the Fibre Channel chapter.

http://dict.leo.org/?p=/0mtk.&search=asymmetrical

Chapter 16 LVM

September 2003 Chapter 16 / Page 32

4. Restore the LVM configuration/headers onto the replaced disk from your backup of
the LVM configuration.

vgcfgrestore -n VG /dev/rdsk/cXtXdX

5. Attach the new disk to the active volume group with the vgchange command.

vgchange -a y vgXX
or
vgchange -a e vgXX (for exclusively activated Cluster VGs)

6. Important: If the disk is the mirror of a root disk, then you must configure the
LIF/BDRA according to the LIF/BDRA Configuration Procedure at the end of this
chapter.

7. Lvextend the mirrors back onto the replaced disk. This may take several minutes as it
will have to copy all the data from the original copy of the data to the mirrored
extents. The logical volume(s) are still accessible to users' applications during this
command.

lvextend -m 1 /dev/vgXX/lvolX /dev/dsk/cXtXdX & (for 1 way mirroring)
or
lvextend -m 2 /dev/vgXX/lvolX /dev/dsk/cXtXdX & (for 3 way mirroring)

To check the progress of the synchronization you could use:

lvdisplay -v $(find /dev/vgXY -type b) | grep stale | wc -l

A shell loop like this could be used to extend a bunch of lvols automatically:

for lvol in lvol1 lvol2 lvol3 ... (specify any LV you need to mirror)

> do
> lvextend –m 1 /dev/vgXX/$lvol /dev/dsk/cXtXdX
> done

Hot-Swap Procedure for Unattached Physical Volumes

Follow these steps to replace a hot-swap disk module for unattached physical volumes.

6. Replace the faulty disk. Please refer to the appropriate administration guide for
instructions on how to replace the disk.

Do an ioscan on the replaced disk to insure that it is accessible (CLAIMED) and also as a
double check that it is a proper replacement (see note above).

ioscan -f /dev/dsk/cXtXdX

Chapter 16 LVM

September 2003 Chapter 16 / Page 33

7. For fibre channel disks perform the replace_dsk steps described in the section “How
to Replace Disks at Hosts with TachLite HBAs” in the Fibre Channel chapter.

8. Restore the LVM configuration/headers onto the replaced disk from your backup of
the LVM configuration.

vgcfgrestore -n VG /dev/rdsk/cXtXdX

9. Attach the new disk to the active volume group with the vgchange command.

vgchange -a y vgXX
or
vgchange -a e vgXX (for exclusively activated Cluster VGs)

10. Important: If the disk is the mirror of a root disk, then you must configure the
LIF/BDRA according to the LIF/BDRA Configuration Procedure at the end of this
chapter.

11. Resynchronize the mirrors of the replaced disk. This may take several minutes as it
will have to copy all the data from the original copy of the data to the mirrored
extents. The logical volume(s) are still accessible to users' applications during this
command.

vgsync vgXY &

To check the progress of the synchronization you could use:

lvdisplay -v $(find /dev/vgXY -type b) | grep stale | wc -l

Removing a Ghost Disk using the PV Key

What is a Ghost Disk

You may come into a situation where you have to remove a PV from a VG that has failed or
not even physically connected but still recorded in the lvmtab. Such a PV is sometimes called
a “ghost disk” or “phantom disk”. You can get a ghost disk if the disk has failed before VG
activation, maybe because the system has been rebooted after the failure.

If you cannot use vgcfgrestore to write the original LVM header back to the new disk because
a valid LVM configuration backup file (/etc/lvmconf/vgXX.conf[.old]) is missing or
corrupted you have to remove that PV from the VG (vgreduce) to get a clean configuration.

NOTE: In such situations the vgcfgrestore command may fail to restore the LVM header, complaining about a

‘Mismatch between the backup file and the running kernel’. If you are 100% sure that your backup is valid
you may override this check using the –R option.

In order to remove a PV from a VG you have to free it first, i.e. remove all logical extents
from it. If the LVs on such a disk is not mirrored data is lost anyway. If it is mirrored you
need to reduce the mirror before removing the PV.

Chapter 16 LVM

September 2003 Chapter 16 / Page 34

A ghost disk is usually indicated by vgdisplay reporting more current PVs than active ones.
Additionally LVM commands may complain about the missing PVs:

vgdisplay vg01
vgdisplay: Warning: couldn't query physical volume "/dev/dsk/c0t11d0":
The specified path does not correspond to physical volume attached to
 this volume group
vgdisplay: Couldn't query the list of physical volumes.
--- Volume groups ---
VG Name /dev/vg01
VG Write Access read/write
VG Status available
Max LV 255
Cur LV 3
Open LV 3
Max PV 16
Cur PV 2 (number of PVs recorded in the lvmtab)
Act PV 1 (number of PVs recorded in the kernel)
Max PE per PV 1016
VGDA 2
PE Size (Mbytes) 4
Total PE 511
Alloc PE 38
Free PE 473
Total PVG 0

Note that the PV c0t11d0 is still recorded in lvmtab:

strings /etc/lvmtab
/dev/vg01
/dev/dsk/c0t0d2
/dev/dsk/c1t2d2
/dev/dsk/c0t11d0

Running vgreduce with the -f option would remove all PVs that are “free”, i.e there is no LV
having extents on that PV. Otherwise - if the PV is not free - vgreduce -f reports an extent
map to identify the associated LVs:

vgreduce -f vg01
skip alternate link /dev/dsk/c1t2d2
vgreduce: Couldn't query physical volume "/dev/dsk/c0t11d0":
The specified path does not correspond to physical volume attached to this
volume group
Not all extents are free. i.e. Out of 508 PEs, only 500 are free.
You must free all PEs using lvreduce/lvremove before the PV can be removed.
Example: lvreduce -A n -m 0 /dev/vg01/lvol1.
 lvremove -A n /dev/vg01/lvol1.
Here's the map of used Pes

 --- Logical extents ---
 LE LV PE Status 1
 0000 lvol1 0000 ???
 0001 lvol1 0001 ???
 0002 lvol1 0002 ???
...

Chapter 16 LVM

September 2003 Chapter 16 / Page 35

In this case lvol1 is having extents on device c0t11d0. You have to remove these extents from
the PV before you are allowed to actually remove the PV from the VG. If the LV is mirrored
use the command lvreduce to remove its mirrored extents. If the LV is unmirrored, data is lost
anyway and you have to use lvremove to delete the LV.

Check the LV state:

lvdisplay -v /dev/vg01/lvol1
lvdisplay: Warning: couldn't query physical volume "/dev/dsk/c0t11d0":
The specified path does not correspond to physical volume attached to
 this volume group
lvdisplay: Couldn't query the list of physical volumes.
--- Logical volumes ---
LV Name /dev/vg01/lvol1
VG Name /dev/vg01
LV Permission read/write
LV Status available/stale
Mirror copies 1
Consistency Recovery MWC
Schedule parallel
LV Size (Mbytes) 32
Current LE 8
Allocated PE 16
Stripes 0
Stripe Size (Kbytes) 0
Bad block on
Allocation strict
IO Timeout (Seconds) default

 --- Distribution of logical volume ---
 PV Name LE on PV PE on PV
 /dev/dsk/c0t0d2 8 8

 --- Logical extents ---
 LE PV1 PE1 Status 1 PV2 PE2 Status 2
 00000 ??? 00000 stale /dev/dsk/c0t0d2 00000 current
 00001 ??? 00001 stale /dev/dsk/c0t0d2 00001 current
 00002 ??? 00002 stale /dev/dsk/c0t0d2 00002 current
 00003 ??? 00003 stale /dev/dsk/c0t0d2 00003 current
 00004 ??? 00004 stale /dev/dsk/c0t0d2 00004 current
 00005 ??? 00005 stale /dev/dsk/c0t0d2 00005 current
 00006 ??? 00006 stale /dev/dsk/c0t0d2 00006 current
 00007 ??? 00007 stale /dev/dsk/c0t0d2 00007 current

In this example you can see, that the LV in question is mirrored. One of its PVs is not
attached to the VG, so its device file is unknown to LVM and displayed as “???”. Addressing
this PV is no longer possible using the device file name

Removing a PV using its PV key

The PV key of a disk indicates its order in the VG. The first PV has the key 0, the second has
the key 1, etc. This does not necessarily have to be the order of appearance in lvmtab altough
it is usually like that, at least when a VG is initially created.

The PV key can be used to address a PV that is not attached to the VG. This usually happens
if it was not accessible during activation, e.g. due to a hardware or configuration problem.

Chapter 16 LVM

September 2003 Chapter 16 / Page 36

NOTE: The PV may be unattached due to some temporary problem during VG activation which is no
longer present. In this case you should try to re-activate the VG to force LVM to re-scan the
devices listed in lvmtab:

vgchange -a y vgXX
or
vgchange -a e vgXX (for exclusively activated Cluster VGs)

If the problem persists follow these steps to clear the situation:

1. Obtain the PV key using the -k option of lvdisplay:

lvdisplay –v –k /dev/vg01/lvol1
...
...
 --- Logical extents ---
 LE PV1 PE1 Status 1 PV2 PE2 Status 2
 00000 0 00000 stale 1 00000 current
 00001 0 00001 stale 1 00001 current
 00002 0 00002 stale 1 00002 current
 00003 0 00003 stale 1 00003 current
 00004 0 00004 stale 1 00004 current
 00005 0 00005 stale 1 00005 current
 00006 0 00006 stale 1 00006 current
 00007 0 00007 stale 1 00007 current

Compared to the output above the ??? have been replaced with the PV key (= 0).

NOTE: You can use the xd(1) command to display the PV key because it is stored at a fixed position

in the LVM header, exactly 8222 bytes from the beginning of the disk:

xd –j8222 -N2 /dev/rdsk/c1t6d0

NOTE: Sometimes you see messages like PV[X] is POWERFAILED in syslog.

In this case X is the PV key.

2. Reduce the mirror with the obtained key as argument:

lvreduce –k –m 0 /dev/vg01/lvol1 0

3. After that the PV can be removed from the VG:

vgreduce -f vg01
skip alternate link /dev/dsk/c1t2d2
vgreduce: Couldn't query physical volume "/dev/dsk/c0t11d0":
The specified path does not correspond to physical volume attached to
 this volume group
PV with key 0 sucessfully deleted from vg vg01
Repair done, please do the following steps.....:
1. save /etc/lvmtab to another file
2. remove /etc/lvmtab
3. use vgscan(1m) -v to re-create /etc/lvmtab
4. NOW use vgcfgbackup(1m) to save the LVM setup

4. Perform the above steps indicated above in order to remove the PV from the lvmtab:

mv /etc/lvmtab /etc/lvmtab.org
vgscan –v

Chapter 16 LVM

September 2003 Chapter 16 / Page 37

...

...
Scan of Physical Volumes Complete.
*** LVMTAB has been created successfully.
*** If PV links are configured in the system.
*** Do the following to resync information on disk.
*** #1. vgchange -a y
*** #2. lvlnboot -R

5. Check the results:

strings /etc/lvmtab

/dev/vg01
/dev/dsk/c0t0d2
/dev/dsk/c1t2d2

6. Re-activate the VG and backup the LVM config:

vgchange -a y vg01
vgcfgbackup vg01

If the LV was not mirrored, re-create the LV (lvcreate), create a FS on it (newfs) and recover
your data from backup.

Increasing the Root LV's size

Usually you cannot easily add space to the root LVs (/ or /stand) because they need to be
contiguous. The following procedures work around this.

Using Ignite/UX

The recommended and only supported procedure to add space to the root LVs is to use
Ignite/UX, e.g. a make_tape_recovery Medium (refer to the Ignite-UX chapter for details). To
create a recovery tape with Ignite/UX containg the entire root VG just insert a medium into
the drive an run:

make_tape_recovery –vA [-d /dev/rmt/Xm]

If for some reason the above does not apply you may use the unofficial (and also
unsupported) procedure below.

Using the Unofficial Procedure

Since the root LV has to be contiguous it is not possible to increase it because it is not the last
LV on the root disk. Anyway - it is possible to do it without using Ignite-UX if there is an
additional free disk available - c1t1d0 in the following example:

Chapter 16 LVM

September 2003 Chapter 16 / Page 38

1. Create a new VG vgroot with c1t1d0:

pvcreate -B /dev/rdsk/c1t1d0 (don’t forget the –B option!)
mkdir /dev/vgroot
ll /dev/*/group (check for unused minor number)
mknod /dev/vgroot/group c 64 0x010000
vgcreate vgroot /dev/dsk/c1t1d0

2. Create LVs for boot, swap and root (in that order). Use at least the same size as in
your original root VG:

lvcreate -C y -r n vgroot
lvextend -L 100 /dev/vgroot/lvol1 (e.g. 100 MB for /stand)

lvcreate -C y -r n vgroot
lvextend -L 512 /dev/vgroot/lvol2 (e.g. 512 MB pri. swap)

lvcreate -C y -r n vgroot
lvextend -L 200 /dev/vgroot/lvol3 (e.g. 200 MB for /)

3. Configure LIF and BDRA on c1t1d0 (see the LIF/BDRA Configuration Procedure).

4. Create LVs for /usr, /opt, /var, /tmp, /etc, /home, etc. Use at least the same size
as in your original root VG:

lvcreate vgroot
lvextend -L 500 /dev/vgroot/lvol4
...

5. Create the file systems:

newfs -F hfs /dev/vgroot/rlvol1
newfs -F vxfs /dev/vgroot/rlvol3
newfs -F vxfs /dev/vgroot/rlvol4
...

6. Mount the file systems:

mkdir /new_root /new_usr /new_stand … (Create mount points)
mount /dev/vgroot/lvol1 /new_stand
mount /dev/vgroot/lvol3 /new_root
mount /dev/vgroot/lvol4 /new_usr
...

7. Copy the data, e.g. using find(1) with cpio(1):

cd /
find . -xdev -depth | cpio -pvdlmax /new_root
cd /stand
find . -xdev -depth | cpio -pvdlmax /new_stand
cd /usr
find . -xdev -depth | cpio -pvdlmax /new_usr
...

Chapter 16 LVM

September 2003 Chapter 16 / Page 39

8. Modify the fstab in /new_root/etc. Replace occurences of vg00 with vgroot:

vi /new_root/etc/fstab

/dev/vgroot/lvol1 /stand hfs defaults 0 0 (new boot LV)
/dev/vgroot/lvol3 / vxfs delaylog 0 0 (new root LV)
/dev/vgroot/lvol4 /usr vxfs delaylog 0 0 (new /usr LV)

9. Change the device files for the root disk in /stand/bootconf to c1t1d0:

vi /stand/bootconf

l /dev/dsk/c1t1d0

10. Configure disk c1t1d0 as boot path in stable storage and boot from it:

setboot -b <HW path of c1t1d0>
shutdown -r 0

11. When the system comes up again, backup vgroot’s LVM Configuration:

vgcfgbackup vgroot

12. And finally remove the old root VG if desired:

vgchange -a n vg00
vgexport vg00

If you like to rename vgroot to vg00:
1. Boot to LVM maintenance mode:

ISL> hpux –lm

2. Export vgroot and import it as vg00:

vgexport vgroot
mkdir /dev/vg00
mknod /dev/vg00/group c 64 0x000000 (we import vg00 with minor 0)
vgimport vg00 /dev/dsk/c1t1d0

3. Activate vg00 and mount the files ystems:

vgchange -a y vg00
mount /dev/vg00/lvol3 /
mount /dev/vg00/lvol1 /stand
mount /dev/vg00/lvol4 /usr
...

Chapter 16 LVM

September 2003 Chapter 16 / Page 40

4. Modify the fstab. Replace vgroot with vg00 again:

vi /etc/fstab

5. Reboot:

shutdown -r 0

LIF/BDRA Configuration Procedure

This subprocedure installs/updates information on disk that is mandatory for boot support.
Therefore it is referenced from several other parts of this chapter.

1. Write LIF header and LIF files (ISL, AUTO, HPUX, LABEL):
mkboot -l /dev/rdsk/cXtXdX
lifls –l /dev/rdsk/cXtXdX (to ckeck it)

2. Write content of AUTO File: (if autoboot is desired)
mkboot -a hpux /dev/rdsk/cXtXdX (autoboot with qurom enforced)
mkboot -a ’hpux –lq’ /dev/rdsk/cXtXdX (autoboot without qurom enforced)
lifcp /dev/rdsk/cXtXdX:AUTO - (to ckeck it)

NOTE: By default, LVM enforces a quorum of >50% of a VG’s PVs being available at activation

time. If e.g. the root VG contains 2 PVs, then the system rejects to boot unless you disable the
quorum check using the –lq option.

3. Install ODE files (may be skipped):
cd /usr/sbin/diag/lif

getconf HW_CPU_SUPP_BITS (the result is either 32, 32/64 or 64)

mkboot -b updatediaglif -p ISL -p AUTO -p HPUX -p LABEL
 /dev/rdsk/cXtXdX (if 32 or 32/64)
mkboot -b updatediaglif2 -p ISL -p AUTO -p HPUX -p LABEL
 /dev/rdsk/cXtXdX (if 64)
(the -p option preserve the specified file so that it is not overwritten in LIF)

Refer to section Offline Diagnostics (ODE) if you have problems with this.

4. Write content of LABEL file, i.e set root, boot, swap and dump device:
NOTE:This step can be omitted if you replace a failed mirror disk. Then this information has already

been restored by vgcfgrestore. To be sure to have the latest information on the disk just do the
following steps.

Chapter 16 LVM

September 2003 Chapter 16 / Page 41

lvlnboot -r /dev/<rootVG>/lvol3

lvlnboot -b /dev/<rootVG>/lvol1

lvlnboot -s /dev/<rootVG>/lvol2

lvlnboot -d /dev/<rootVG>/lvol2

lvlnboot –v (to ckeck it)

Commands Overview

command desciption
vgcreate create a new VG
vgdisplay display information about the VG
vgchange activate/deactive a VG or change parameter of a VG
vgextend add a new PV to the VG
vgreduce remove a PV from the VG
vgremove remove a VG (better use vgexport)
vgcfgbackup backup the LVM header of a disk to a file
vgcfgrestore restore the LVM header from a file to a disk
vgexport remove the info of a VG from the system
vgimport create a previously exported VG on this system
vgscan recontruct /etc/lvmtab from the LVM headers on disk
vgchgid change the VG-ID of a VG (needed for XPs)
vgsync synchronize all mirrored LVs in the VG

lvcreate create a new LV
lvdisplay display information about LV
lvchange change characteristics of a LV
lvextend increase the size of LV / add a mirror copy to LV
lvreduce decrease the size of LV / remove a mirror copy from LV
lvremove remove the LV
lvspit split a mirror copy of a LV (results in a separate LV)
lvmerge merge a splitted mirror copy of a LV
lvsync synchronize a mirrored LV
lvlnboot set info about root, boot, swap, dump LVs in the BDRA
lvrmboot delete info about root, boot, swap, dump LVs from BDRA

pvcreate initialize a new disk for LVM
pvdisplay display information about PV within VG
pvchange change characteristics of a PV
pvmove move PEs of a LV from one PV to another
pvremove remove LVM data structure from a PV
pvck check or repair a physical volume in a VG

Chapter 16 LVM

September 2003 Chapter 16 / Page 42

NOTE: All LVM commands are hard-linked to the same single executable, e.g:

ll -iF vg* lv* pv* nomwc*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvchange*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvcreate*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvdisplay*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvextend*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvlnboot*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvmerge*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvreduce*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvremove*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvrmboot*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvsplit*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 lvsync*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 nomwcsyncd*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 pvchange*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 pvck*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 pvcreate*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 pvdisplay*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 pvmove*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 pvremove*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgcfgbackup*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgcfgrestore*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgchange*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgchgid*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgcreate*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgdisplay*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgexport*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgextend*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgimport*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgreduce*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgremove*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgscan*
 241 -r-sr-xr-x 31 root sys 557056 Jan 30 11:03 vgsync*

	Chapter 16�-�LVM
	Terminology
	LVM Structural Information
	PVRA, BDRA and VGRA
	LIF Header and LIF Volume
	PV-ID and VG-ID
	vgcfgbackup(1M)
	/etc/lvmtab and vgscan(1M)

	Parameters and Limitations
	LVM parameters
	How the size of the VGRA is calculated
	Maximum max_pe values for non-boot disks
	Maximum max_pe values for boot disks
	Supported JFS (VxFS) file and file system sizes
	Supported HFS file and file system sizes

	Display Commands
	Information on VGs
	Information on PVs
	Information on LVs

	LVM Basic Functionality
	Adding a new PV / VG / LV
	Adding a new PV
	Adding a new VG
	Adding a new LV

	Modifying a PV / VG / LV
	Modifying a PV
	Modifying a LV
	Modifying a VG

	Removing a PV / VG / LV
	Remove an LV
	Remove a PV from a VG
	Remove a VG

	Moving physical extents
	Importing and exporting VGs

	MirrorDisk/UX
	Basic functionality
	Physical Volume Groups - PVGs
	Root Mirror

	PV Links (Alternate Paths)
	Configuring PV Links
	Changing PV Link order
	Utility cmpdisks

	Offline Diagnostic Environment (ODE)
	LVM and MC/ServiceGuard (Cluster LVM)
	
	Example: Adding a disk to a cluster VG

	Replacing a Failed LVM Disk
	Identifying the failed disk
	Disk Replacement Flow Chart
	Hot-Swap Procedure for Attached Physical Volumes
	Hot-Swap Procedure for Unattached Physical Volumes

	Removing a Ghost Disk using the PV Key
	What is a Ghost Disk
	Removing a PV using its PV key

	Increasing the Root LV's size
	Using Ignite/UX
	Using the Unofficial Procedure
	If you like to rename vgroot to vg00:

	LIF/BDRA Configuration Procedure
	Commands Overview

