
Chapter 16 LVM

March 2002 Chapter 16 / Page 1

Chapter 16 LVM

March 2002 Chapter 16 / Page 2

INDEX

Terminology 3
LVM Structural Information 3

PVRA, VGRA and BDRA.. 3
LIF Header and LIF Volume... 4
PV-ID and VG-ID ... 4
vgcfgbackup(1M).. 5
/etc/lvmtab and vgscan(1M).. 6

LVM Related Parameters and Limitations 7
LVM parameters ... 7
Supported file and file system sizes .. 7

Display Commands 8
Information on VGs .. 8
Information on PVs ... 9
Information on LVs... 9

LVM Basic Functionality 10
Adding a new PV / VG / LV... 10
Modifying a PV / VG / LV ... 12
Removing a PV / VG / LV.. 13
Moving physical extents ... 14
Importing and exporting VGs ... 14

MirrorDisk/UX 16
Basic functionality .. 16
Physical Volume Groups - PVGs.. 17
Root Mirror ... 18

PV Links 18
What is it? ... 18
Configuring PV Links ... 18
Changing PV Link order ... 20
Utility cmpdisks .. 20

Offline Diagnostics (ODE) 21
Changing the HW Address of a Disk 23
LVM and MC/ServiceGuard (Cluster LVM) 24
Replacing a Failed Disk 26

Identifying the failed disk ... 26
Standard (non-hot-swappable) disk... 27
Hot-swappable disks ... 30

Removing a „ghost disk“ From a VG - the PV Key 33
What is a ghost disk .. 33
The PV key.. 35

Increasing the Root LVs 38
using Ignite-UX... 38
using the unofficial procedure... 38

SUBPROCEDURE 1: create LIF and BDRA on the disk 41
Commands Overview 42

Chapter 16 LVM

March 2002 Chapter 16 / Page 3

K

Terminology

The following abbreviations are common in LVM and will be used during this chapter:

VG = Volume Group
LV = Logical Volume
PV = Physical Volume
PVG = Physical Volume Group
PE = Physical Extent
LE = Logical Extent
FS = Filesystem
VGRA = Volume Group Reserved Area
PVRA = Physical Volume Reserved Area
BDRA = Boot Data Reserved Area

LVM Structural Information

The LVM structural information resides on reserved areas (PVRA, VGRA) at the beginning
of any disk in the VG and is called the LVM header. The following image shows the on disk
structure of an LVM disk:

 non-bootable bootable
 disk disk

PVRA LIF header
VGRA PVRA

 BDRA
 LIF volume
 VGRA

User Data

User Data

Bad block pool Bad block pool

NOTE: the LVM header of a bootable disk is always 2912 KB. The header size o

fixed. It depends on the number of PVs, size of PEs, etc. but it is usually
to fit in one PE.

PVRA, VGRA and BDRA

The PVRA is unique for every PV in the VG. It contains:

PV-ID, VG-ID, number of this PV, PE size,
start and length of: VGRA, BDRA (if any), User Data and bad bl
and in case of a ServiceGuard Cluster: Cluster ID, Cluster lock ar
2912
f a non-bootable disk is not
smaller. The LVM header has

ock pool
ea start and cluster lock

Chapter 16 LVM

March 2002 Chapter 16 / Page 4

flag.

The VGRA is identical for any PV in the VG. It contains:

VG-ID, max. number of PVs/LVs in VG, number of PVs in VG, max. number of PEs per
PV, timestamp (time of last write to VGRA).
per PV information: PV-ID, number of PEs, PV flags, ...
per LV information: max. size of LV, LV flags, LV schedule strategy, max. number of

mirrors, number of stripes and stripe size, ...

The BDRA contains boot relevant information:

number of PVs in root VG, list of PVs in root VG, root VG major/minor number, root LV
major/minor numbers, what are the root, boot, swap and dump LVs, status information,
timestamp (time of last write to BDRA).

LIF Header and LIF Volume

LIF stands for Logical Interchange Format. The LIF header resides in the first 8 KB of any
LVM boot disk. It contains the directory to the LIF volume that begins after the BDRA. It can
be displayed using lifls(1M):

lifls -l /dev/rdsk/c1t6d0
volume ISL10 data size 7984 directory size 8
filename type start size implement created
===
ISL -12800 584 306 0 00/11/08 20:49:59
AUTO -12289 896 1 0 00/11/08 20:49:59
HPUX -12928 904 848 0 00/11/08 20:50:00
PAD -12290 1752 1580 0 00/11/08 20:50:00
LABEL BIN 3336 8 0 99/10/08 02:48:02

The LIF volume contains files necessary to boot: ISL, HPUX, LABEL and AUTO (for
automatical boot). Look at the Boot Chapter in order to get a detailed explanation of each LIF
file.

PV-ID and VG-ID

Any PV has a unique 8 byte long identifier - the PV-ID. The VG-ID is a unique identifier for
the VG that this PV belongs to. It is also 8 byte long. Their values are stored in the PVRA.

The (contributed) utility lvm11 displays the LVM header:
lvm11 -p -d /dev/rdsk/c1t2d0 | more
...
...
/* The physical volume ID. */ 2000252410 965817345i.e.
pvcreate(1m) was run on CPU with ID 2000252410 at Wed Aug 9 12:35:45
2000
/* The volume group ID. */ 2000252410 965817462i.e.
vgcreate(1m) was run on CPU with ID 2000252410 at Wed Aug 9 12:37:42
2000
...

Since the lvm11 tool may not always be available you can also read out PV-ID and VG-ID

Chapter 16 LVM

March 2002 Chapter 16 / Page 5

using “in core” commands that are available on any HP-UX system.

For example using xd(1):
xd -j8200 -N16 -tu /dev/rdsk/c1t2d0
0000000 2000252410 965817345 2000252410 965817462

PV CPU-ID PV time VG CPU-ID VG time

i.e:
pvcreate and vgcreate were running on CPU with systemID 2000252410 (see uname -i).
pvcreate was running at timestamp 965817345 (this is in seconds after 1st Jan.1970)
vgcreate was running at timestamp 965817462 (117 seconds later)

or using adb(1):

PV-ID:
echo "0d8200?DY" | adb /dev/dsk/c1t2d0
2008: 2000252410 2000 Aug 9 12:35:45

VG-ID:
echo "0d8208?DY" | adb /dev/dsk/c1t2d0
2010: 2000252410 2000 Aug 9 12:37:42

vgcfgbackup(1M)

A copy of the LVM header is held within the filesystem in the LVM backup file
(/etc/lvmconf/*.conf). Any modification of the LVM structure, e.g. through LVM commands
like lvcreate, lvchange, vgextend, etc. will be automatically saved in the VGs config file
through vgcfgbackup(1M).

NOTE (<= UX 10.01):
The backup will not automatically take place on systems running HP-UX 10.01 and before.

You can run vgcfgbackup(1M) manually at any time:

vgcfgbackup vg00
Volume Group configuration for /dev/vg00 has been saved in
/etc/lvmconf/vg00.conf

The content of the backup file is binary but you can use the -l option of vgcfgrestore(1M) to
display at least the disks belonging to the VG:

vgcfgrestore -l -n vg00
Volume Group Configuration information in "/etc/lvmconf/vg00.conf"
VG Name /dev/vg00
---- Physical volumes : 1 ----

/dev/rdsk/c1t6d0 (Bootable)

If the LVM header has been accidently overwritten or became corrupted on the disk you can
recover it from this backup file using vgcfgrestore.

You usually use vgcfgrestore in case of a disk failure in order to write the LVM header from
this backup file to the new disk:

vgcfgrestore -n vg00 /dev/rdsk/c1t6d0

Chapter 16 LVM

March 2002 Chapter 16 / Page 6

Volume Group configuration has been restored to /dev/rdsk/c1t6d0

NOTE: If you modify the LVM configuration but do not want the backup file to be updated, use the option “-A

n” with the LVM command. Anyway - the previous configuration can be found in
/etc/lvmconf/*.conf.old.

/etc/lvmtab and vgscan(1M)

The file /etc/lvmtab contains information about all VGs known to the system. The display
commands above print their data based on this file. lvmtab is a binary file but you can display
the printable characters in that file using the strings(1M) command:

strings /etc/lvmtab
/dev/vg00
/dev/dsk/c2t0d0
/dev/vgsap
/dev/dsk/c4t0d0
/dev/dsk/c5t0d0
/dev/dsk/c4t1d0
/dev/dsk/c5t1d0
/dev/vg01
/dev/dsk/c6t0d0

NOTE: this is only the “visible” part of the lvmtab. It does also furthermore contain the VG-IDs, the total

number of VGs, the number of PVs per VG and status information. Additional garbage characters
printed by strings are not a problem as long as no important data is missing.

All VGs listed in lvmtab are automatically activated during system startup. This is done in the
script /sbin/lvmrc, based upon configuration in /etc/lvmrc.
If you do not trust the information in the lvmtab anymore because it may have become corrupt
somehow you can easily recreate it from PVRA and VGRA on the disks through the
vgscan(1M) command. But be sure to save a copy before:

mv /etc/lvmtab /etc/lvmtab.old
vgscan -v

Warnings can usually be ignored.

NOTE: It’s recommended not to copy but to move the lvmtab away, otherwise vgscan would try to repair the

existing lvmtab which may fail under certain circumstances. If there is no /etc/lvmtab vgscan recreates it
from the scratch.

ATTENTION: On a ServiceGuard system vgscan may fail. This is a known problem that is solved by LVM

commands cumulative patches. The workaround is easy, just remove the file /dev/slvmvg before
running vgscan.

NOTE: vgscan does not take care about the order of alternate links! It may be necessary to switch the links

afterwards (see section PV Links below).

Chapter 16 LVM

March 2002 Chapter 16 / Page 7

LVM Related Parameters and Limitations

LVM parameters

There are several parameters that limit the sizes of certain structures. Here are the most
important ones:

Parameter Default Maximum set by
max. number of VGs 10 256 kernel tunable maxvgs
number of PVs per VG 16 255 vgcreate -p <max_pv>
number of LVs per VG 255 255 vgcreate -l <max_lv>
PE size (2^X) 4 MB 256 MB vgcreate -s <pe_size>
LV size 0 MB 16 TB lvcreate -L <MB>
max. number of PE per PV 1016 PEs 65535 PEs vgcreate -e <max_pe>

Supported file and file system sizes

Although it may be possible to create files or file systems larger than these documented limits,
such files and file systems are not supported and the results of using them may be
unpredictable.

JFS (VxFS) supported sizes

HP-UX
Release

HP JFS
Version

Veritas
Disk Layout
Version

Maximum
File Size

Maximum
File System
Size

UX 10.01 JFS 2.0 Version 2 2 GB 4 GB

UX 10.10 JFS 2.0 Version 2 2 GB 128 GB

Version 2 2 GB 128 GB UX 10.20 JFS 3.0
Version 3 128GB 128 GB

Version 2 2 GB 128 GB JFS 3.1
Version 3 1 TB 1 TB
Version 2 2 GB 128 GB
Version 3 1 TB 1 TB

UX 11.00

JFS 3.3

Version 4 1 TB 1 TB

Version 2 2 GB 128 GB
Version 3 2 TB 2 TB

UX 11.11 JFS 3.3

Version 4 2 TB 2 TB

bold default disk layouts for particular HP-UX Release/JFS version.
NOTE: for UX 11.00 with disk layout version 3 PHKL_22719 (or newer) is needed to avoid

mount problems if extending or creating file systems beyond 128 GB.

and just to be complete

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHKL_22719

Chapter 16 LVM

March 2002 Chapter 16 / Page 8

HFS supported sizes

HP-UX
Release

Maximum
File Size

Maximum
File System
Size

UX 10.01 2 GB 4 GB
UX 10.10 2 GB 128 GB
UX 10.20 128 GB 128 GB
UX 11.00 128 GB 128 GB
UX 11.11 128 GB 128 GB

NOTE: As of UX 10.20 it is possible to exceed the 128 GB limit to 256 GB, but it is not

supported.

Display Commands

To display information about VGs, LVs or PVs there is a set of commands available. Each of
the commands provides an option -v to display detailed (verbos) output.

Information on VGs

vgdisplay -v vg01

--- Volume groups ---
VG Name /dev/vg01
VG Write Access read/write
VG Status available
Max LV 255
Cur LV 1
Open LV 1
Max PV 16
Cur PV 1
Act PV 1
Max PE per PV 1016
VGDA 2
PE Size (Mbytes) 4
Total PE 508
Alloc PE 508
Free PE 0
Total PVG 0
Total Spare PVs 0
Total Spare PVs in use 0

--- Logical volumes ---
LV Name /dev/vg01/lvol1
LV Status available/syncd
LV Size (Mbytes) 2032
Current LE 508
Allocated PE 508
Used PV 1

--- Physical volumes ---
PV Name /dev/dsk/c10t6d0

Chapter 16 LVM

March 2002 Chapter 16 / Page 9

PV Status available
Total PE 508
Free PE 0
Autoswitch On

vgdisplay is useful to check wether the LVM configuration in memory is clean or not. First of
all there should be no error messages. The status should be available or available/exclusive for
ServiceGuard VGs. Cur PV should equal Act PV and Cur LV should be equal to Open LV.

Information on PVs

pvdisplay -v /dev/dsk/c0t6d0 | more

--- Physical volumes ---
PV Name /dev/dsk/c0t6d0
VG Name /dev/vg00
PV Status available
Allocatable yes
VGDA 2
Cur LV 9
PE Size (Mbytes) 4
Total PE 1023
Free PE 494
Allocated PE 529
Stale PE 0
IO Timeout (Seconds) default

--- Distribution of physical volume ---
LV Name LE of LV PE for LV
/dev/vg00/lvol1 25 25
/dev/vg00/lvol2 25 25
/dev/vg00/lvol3 50 50

--- Physical extents ---
PE Status LV LE
0000 current /dev/vg00/lvol1 0000
0001 current /dev/vg00/lvol1 0001
0002 current /dev/vg00/lvol1 0002
.
.
1021 free 0000
1022 free 0000

Stale PE should be 0.

Information on LVs

lvdisplay -v /dev/vg00/lvol1 | more

--- Logical volumes ---
LV Name /dev/vg00/lvol1
VG Name /dev/vg00
LV Permission read/write
LV Status available/syncd
Mirror copies 0
Consistency Recovery MWC
Schedule parallel
LV Size (Mbytes) 100

Chapter 16 LVM

March 2002 Chapter 16 / Page 10

Current LE 25
Allocated PE 25
Stripes 0
Stripe Size (Kbytes) 0
Bad block off
Allocation strict/contiguous

--- Distribution of logical volume ---
PV Name LE on PV PE on PV
/dev/dsk/c0t6d0 25 25

--- Logical extents ---
LE PV1 PE1 Status 1
0000 /dev/dsk/c0t6d0 0000 current
0001 /dev/dsk/c0t6d0 0001 current
0002 /dev/dsk/c0t6d0 0002 current
...

None of the LEs/PEs should have a stale status.

LVM Basic Functionality

Adding a new PV / VG / LV

Adding a new PV
A disk has to be initialized before LVM can use it. The pvcreate command writes the PVRA
to the disk and such a disk is called a PV:

pvcreate /dev/rdsk/c0t5d0

If there is a valid PVRA already on the disk (it could have been used wit LVM before) you
will get the following error message:

pvcreate: The Physical Volume already belongs to a Volume Group

If you are sure the disk is free you can force the initialization using the -f option:
pvcreate -f /dev/rdsk/c0t5d0

NOTE: For bootable disks you have to use the -B option additionally. This preserves the fixed 2912KB space
for the LVM header (see section LVM structural information). You can find the procedure how to make
a disk bootable in the section Mirroring the root disk later in this chapter.

To add the PV to an existing VG do:

vgextend vg01 /dev/dsk/c0t5d0
vgdisplay -v vg01

Adding a new VG
Here’s how to create a new VG with 2 disks:

1) initialize the disk if not yet done:
pvcreate [-f] /dev/rdsk/c0t5d0

Chapter 16 LVM

March 2002 Chapter 16 / Page 11

pvcreate [-f] /dev/rdsk/c0t6d0

2) select a unique minor number for the VG

ll /dev/*/group
crw-r--r-- 1 root sys 64 0x000000 Apr 4 2001 /dev/vg00/group
crw-r--r-- 1 root sys 64 0x010000 Oct 26 15:52 /dev/vg01/group
crw-r--r-- 1 root sys 64 0x020000 Aug 2 15:49 /dev/vgsap/group

3) create the VG control file (group file):
mkdir /dev/vgnew
mknod /dev/vgnew/group c 64 0x030000

NOTE: Starting with LVM commands patch PHCO_24645 (UX 11.00) or PHCO_25814 (UX 11.11)
vgcreate and vgimport will check for the uniqueness of the group file's minor number.

4) create and display the VG:
vgcreate vgnew /dev/dsk/c0t5d0 /dev/dsk/c0t6d0
vgdisplay -v vg01

NOTE: One of the VG’s parameters is max_pe, i.e the maximum number of physical extents this VG can

handle per disk. The default value is 1016. Multiplying this with the default PE size of 4MB results in
approx. 4GB disk space that can be handled by this VG. Adding a larger disk to this VG later is not
possible. Believe me - there are absolutely no options to do this other than vgcreate! Anyway - vgcreate
automatically adjusts max_pe in order be able to handle the largest PV given in the arguments. Its
always a good idea to set max_pe explicitely to a value large enough to allow for future expansions.
This can be done with the -e option of vgcreate.

Adding a new LV
The following commands create a 500MB large LV named lvdata on any disk(s) of the VG
vg01:

lvcreate -n lvdata -L 500 vg01

You cannot specify a PV with lvcreate. If you like to put the LV on a certain PV use the
following:

lvcreate -n lvdata vg01

this creates a LV of 0MB. It has no extents - it just exists. Now extend the LV onto a certain
disk:

lvextend -L 500 /dev/vg01/lvdata /dev/dsk/c4t2d0

Now you can use newfs to put a FS onto the LV:
newfs -F <fstype> /dev/vg01/rlvdata

where fstype is either hfs or vxfs.

NOTE: Nowadays it is always recommended to use a VxFS (=JFS) filesystem.

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_24645
http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_25814

Chapter 16 LVM

March 2002 Chapter 16 / Page 12

Modifying a PV / VG / LV

Modifying a PV
There are certain PV parameters that can be changed (see pvchange man page). A frequently
used parameter is the IO timeout parameter. This parameter tells LVM how long to wait for
disk transactions to complete before taking the device offline. This is accompanied by
POWERFAILED messages on the console. Certain disk arrays need a higher timeout value
than simple disks. To specify e.g. a timeout of 120 seconds do:

pvchange -t 120 /dev/dsk/c#t#d#

The device driver’s default is usually 30 seconds. Setting the IO timeout to 0 seconds restores
this default:

pvchange -t 0 /dev/dsk/c#t#d#

Modifying a LV
The most common modifiaction task is the modification of the size of a LV. To increase a LV
from 500MB to 800MB do:

lvextend -L 800 /dev/vg01/lvdata [/dev/dsk/c5t0d0]

NOTE: You may get the following error:

lvextend: Not enough free physical extents available.
Logical volume "/dev/vg01/lvdata" could not be extended.
Failure possibly caused by contiguous allocation policy.
Failure possibly caused by strict allocation policy

The reason for that is exactly one of the above.

If the LV has been extended successfully you need to increase the FS that resides on that LV:

Without OnlineJFS you have to umount the FS first:

umount /dev/vg01/lvdata
extendfs /dev/vg01/rlvdata
mount /dev/vg01/lvdata <mountpoint>

With OnlineJFS you do not need to umount. Use fsadm instead:

fsadm -b <new size in KB> <mountpoint>

NOTE: Reducing a LV without OnlineJFS is not possible. You have to backup the data, remove and recreate the

LV, create a new FS and restore the data from the backup into that FS.

With OnlineJFS you can try to reduce the FS using fsadm specifying the new size in KB. Due
to some design limitations this often fails with JFS 3.1 and older. After fsadm successfully
reduced the FS you can use lvreduce to reduce the underlying LV:

lvreduce -L <new size in MB> /dev/vg01/lvdata

For details regarding JFS and OnlineJFS consult the JFS Chapter.

Chapter 16 LVM

March 2002 Chapter 16 / Page 13

To change the name of a LV you can simply rename the LV devicefiles:
umount /dev/vg01/lvol1
mv /dev/vg01/lvol1 /dev/vg01/lvdata
mv /dev/vg01/rlvol1 /dev/vg01/rlvdata
mount /dev/vg01/lvdata <mountpoint>

There are several other characteristics of an LV that can be modified. Most commonly used
are allocation policy, bad block relocation and LV IO-timeout. For details look at the
lvchange man page.

Modifying a VG
The vgchange command can be used to (de)activate a VG. Certain parameters like max_pe
(see above) cannot be changed without recreating the VG.

In order to rename a VG you have to export and re-import it:

umount /dev/vg01/lvol1
umount /dev/vg01/lvol2
...

vgchange -a n vg01
vgexport -m /tmp/mapfile vg01

ll /dev/*/group (choose a unique minor no.)
mkdir /dev/vgnew
mknod /dev/vgnew/group c 64 0x010000
vgimport -m /tmp/mapfile vgnew /dev/dsk/c4t0d0 /dev/dsk/c5t0d0 ...

NOTE: If you are dealing with a large amount of disks i recommend to use the “-f outfile” option with
vgexport/vgimport. See section Importing and exporting VGs for details.

NOTE: Starting with LVM commands patch PHCO_24645 (UX 11.00) or PHCO_25814 (UX 11.11)
vgcreate and vgimport will check for the uniqueness of the group file's minor number.

vgcfgbackup vgnew

For details regarding vgchange look at the man page. vgexport/vgimport is described below in
greater detail.

Removing a PV / VG / LV

Remove a LV
umount /data
lvremove /dev/vg01/lvsap

Remove a PV from a VG
vgreduce vg01 /dev/dsk/c5t0d0

Remove a VG
umount any LV of this VG, deactivate and export it:

umount /dev/vg01/lvol1

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_24645
http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_25814

Chapter 16 LVM

March 2002 Chapter 16 / Page 14

umount /dev/vg01/lvol2
...

vgchange -a n vg01
vgexport vg01

NOTE: vgremove is not recommended because you need to remove all LVs and PVs from the VG before you

could use vgremove. This is not necessary with vgexport. Additionally vgexport leaves the LVM
structures on the disks untouched which could be an advantage if you like to re-import the VG later.

Moving physical extents

It is only possible to move PEs within a VG. In order to move data across VGs you need to
use commands like dd, cp, mv, tar, cpio, ...
There is a command available that allows you to move LVs or certain extents of a LV from
one PV to another - pvmove(1M). It is usually used to “free” a PV, i.e. to move all LVs from
that PV in order to remove it from the VG. There are several forms of usage:

In order to move all PEs from c0t1d0 to the PVs c0t2d0 and c0t3d0:

pvmove /dev/dsk/c0t1d0 /dev/dsk/c0t2d0 /dev/dsk/c0t3d0

In order to move all PEs of lvol4 that are located on PV c0t1d0 to PV c1t2d0:
pvmove -n /dev/vg01/lvol4 /dev/dsk/c0t1d0 /dev/dsk/c0t2d0

ATTENTION:
pvmove is slow and unsave and therefore not recommended. It is unsafe because it only
moves PE by PE, i.e it can be easyly interrupted before completion. Interrupting a pvmove
command usually results in a corrupted LV. It is slow because the LVM header gets updated
any time a single PE has been moved.

If MirrorDisk/UX is installed it is highly recommended to use mirroring as an alternative to
pvmove. In order to move lvol4 from PV c0t1d0 to c0t2d0 just mirror it to c0t2d0 and remove
the mirror from c0t1d0 afterwards:

lvextend -m 1 /dev/vg01/lvol4 /dev/dsk/c0t2d0
lvreduce -m 0 /dev/vg01/lvol4 /dev/dsk/c0t1d0

NOTE: Be careful when moving one of the first 3 LVs of vg00 (boot, swap, root). A successful boot depends on

the correct setup of these LVs.

Importing and exporting VGs

The functionality of exporting VGs allows you to remove all data concerning a dedicated VG
from the system without touching the data on the disks. The disks of an exported VG can be
physically moved to another system and the VG can be imported there. Exporting a VG
means the following: remove the VG and corresponding PV entries from /etc/lvmtab and
remove the VG directory with their device files in /dev. Again - the data on the disks is left
unchanged.
Since the structural layout of the LVM information on disk has not changed throughout the
HP-UX releases you can import a VG that has been created on a UX 10.20 system e.g. on a

Chapter 16 LVM

March 2002 Chapter 16 / Page 15

UX 11.11 system.

vgexport has a -m option to create a so called mapfile. This ascii file simply contains the LV
names because they are not stored on the disks. You need a mapfile if you do not have the
standard names for the LV device files (lvol1, lvol2, ...).

Here’s the procedure to export a VG on system A and import it on system B:

on system A:
Umount all LVs that belong to the VG and deactivate it:

vgchange -a n vg01

Export the VG:
vgexport -v -m /tmp/vg01.map vg01

Now all information about vg01 has been removed from system A. The disks can now be
moved to system B and the VG can be imported there:

on system B:
Create the directory for the LV device files and the group file. It is important to choose a
minor number that is unique on system B.

ll /dev/*/group

mkdir /dev/vg01 (you could also choose another VG name)
mknod /dev/vg01/group c 64 0x##0000

NOTE: Starting with LVM commands patch PHCO_24645 (UX 11.00) or PHCO_25814 (UX 11.11)
vgcreate and vgimport will check for the uniqueness of the group file's minor number.

Now copy the mapfile from system A and import the VG:

vgimport -v vg01 -m /tmp/vg01.map /dev/dsk/c1t0d0 /dev/dsk/c1t1d0

NOTE: The PV device files may be different on system B compared to system A.

If you have a bunch of disks in the VG you may not want to specify each of them within the
argument list of vgimport. Using the -s option with vgexport/vgimport lets you get around
this:

vgexport -v -s -m /tmp/vg01.map vg01

If you specify -s in conjunction with the -m option vgexport simply adds the VG-ID to the
mapfile:

cat /tmp/vg01.map
VGID bfb13ce63a7c07c4
1 lvol1
2 lvol2
3 lvsap
4 lvdata

When using the -s option with the vgimport command on system B all disks that are
connected to the system are scanned one after another. If the VG-ID listed in the mapfile is
found on the header of a disk this disk is included automatically into the VG
Here’s the appropriate vgimport command:

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_24645
http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHCO_25814

Chapter 16 LVM

March 2002 Chapter 16 / Page 16

vgimport -v -s -m /tmp/vg01.map vg01

So you do not have to specify the PVs anymore.

ATTENTION:
On systems using data replication products like BusinessCopy/XP, ContinousAccess/XP, EMC SRDF or EMC
Timefinder it may be impossible to reliably identify the correct list of PVs using this VG-ID mechanism. You
should specify the list of PVs explicitely here. The newly introduced –f option for vgimport helps to specify
large PV lists on the command line (see man page). The -f Option is only available as of UX 11.X. For UX 11.00
you need LVM commands patch PHCO_20870 or later.

MirrorDisk/UX

Basic functionality

To be able to mirror LVs you need to purchase the product MirrorDisk/UX. Its important to
remember that LVs are mirrored - not PVs. Especially the LVM header is not mirrored
because it does not belong to the LV. You can have 1 or 2 mirror copies.

Here’s how to mirror an existing LV to a specific PV:

lvextend -m 1 /dev/vg01/lvol1 /dev/dsk/c1t0d0

NOTE: lvextend allows either to specify the size of a LV (-L or -l) OR the number of mirror
copies (-m). You cannot specify both within one command.

lvdisplay shows a mirrored LV like this:
lvdisplay -v /dev/vg01/lvol1 | more
...
...
--- Logical extents ---
LE PV1 PE1 Status 1 LE PV2 PE2 Status 2
0000 /dev/dsk/c0t6d0 0000 current 0000 /dev/dsk/c1t6d0 0000 current
0001 /dev/dsk/c0t6d0 0001 current 0001 /dev/dsk/c1t6d0 0001 current
...

To reduce the mirror (from PV c1t6d0):

lvreduce –m 0 /dev/vg01/lvol1 /dev/dsk/c1t6d0

ATTENTION: If the LV uses the distributed allocation policy (aka extent based striping) you need to specify
all PVs that you want to remove the mirror copy from. There is not (yet) an option that lets you specify the PVG
as argument to lvreduce but there will be a LVM commands patch (maybe mid 2002). To check if the LV uses
distributed allocation policy:

lvdisplay /dev/vgXY/lvXY | grep Allocation

should show “distributed”.

NOTE: Extending a mirrored LV works exactly like extending a non-mirrered LV. lvextend enlarges both

mirror copies. The LV allocation policies strict or PVG-strict ensure that the mirrors reside on
independent disks.

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=20870

Chapter 16 LVM

March 2002 Chapter 16 / Page 17

Physical Volume Groups - PVGs

If there are multiple host bus adapters (SCSI or fibre channel) available on the system it is
useful in terms of high availablility to have mirror copies located on different adapters. The
strict allocation policy for mirrored LVs guarantees that the mirror copy will not be placed on
the same disk but it could be placed on a disk that is on the same adapter. The latter case can
be avoided by using physical volume groups. A PVG is a subset of PVs within a VG that can
be defined using -p option of vgcreate/vgextend or simply by creating an ascii file called
/etc/lvmpvg.

Here’s an example configuration:

If you want to be sure that the mirrors of LVs on e.g. c0t1d0 are not placed on c0t2d0 you
need a lvmpvg file like the following:

cat /etc/lvmpvg
VG /dev/vg01
PVG pvg_a
/dev/dsk/c0t1d0
/dev/dsk/c0t2d0
PVG pvg_b
/dev/dsk/c1t4d0
/dev/dsk/c1t5d0

As soon as this file is saved the configuration is active and vgdisplay will look like this:

vgdisplay -v vg01
...
...
--- Physical volume groups ---
PVG Name pvg_a
PV Name /dev/dsk/c0t1d0
PV Name /dev/dsk/c0t2d0

PVG Name pvg_b
PV Name /dev/dsk/c1t4d0
PV Name /dev/dsk/c1t5d0

Before mirroring a LV you need to set it’s allocation policy to PVG-strict, e.g:

lvchange -s g /dev/vg01/lvol1

lvdisplay /dev/vg01/lvol1 | grep Allocation
Allocation PVG-strict

 c0t1d0

pvg_a

host

vg01

c0

c1

c0t2d0

c1t4d0

pvg_b

c1t5d0

Chapter 16 LVM

March 2002 Chapter 16 / Page 18

For details look at the lvmpvg man page.

Root Mirror

To set up a mirrored root config you need to add an additional disk (e.g. c1t6d0) to the root
VG mirror all the LVs and make it bootable.

Initialize the disk and add it to vg00:

pvcreate [-f] -B /dev/rdsk/c1t6d0
vgextend vg00 /dev/dsk/c1t6d0

mirror the LVs:
for i in lvol1 lvol2 ... lvol8 (specify any LV in the VG you like to mirror)
> do lvextend -m 1 /dev/vg00/$i /dev/dsk/c1t6d0
> done

go to SUBPROCEDURE 1: create LIF and BDRA to make the disk bootable

specify mirror disk as alternate boot path:

setboot –a <HW-Path of mirror>

If you like to reduce the mirror from c1t6d0 again, do the following:

for i in lvol8 lvol7 ... lvol1 (specify any LV in the VG)
> do lvreduce -m 0 /dev/vg00/$i /dev/dsk/c1t6d0
> done

PV Links

What is it?

Physical Volume Links (or Alternate Links) is a High Availability Feature of LVM. LVM
allows to configure multiple links (HW paths) to the same PV. One of them is considered as
the primary link and the others act as alternate links. If LVM detects the primary link beeing
unavailable as a consequence of a failure of a SCSI/FC card/cable it switches IO to the first
available alternate link.

NOTE: It is the order in /etc/lvmtab that defines the default primary and alternate links.

Configuring PV Links

The following example shows how to create a VG with a disk having an alternate link. First
check the available disk devices using ioscan:

ioscan -fnkCdisk | more

Class I H/W Path Driver S/W State H/W Type Description

===

disk 0 0/0/2/0.6.0 sdisk CLAIMED DEVICE SEAGATE ST39102LC

Chapter 16 LVM

March 2002 Chapter 16 / Page 19

/dev/dsk/c1t6d0 /dev/rdsk/c1t6d0

disk 1 0/0/2/1.6.0 sdisk CLAIMED DEVICE SEAGATE ST39102LC

/dev/dsk/c2t6d0 /dev/rdsk/c2t6d0

disk 2 0/12/0/0.0.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC

/dev/dsk/c4t0d0 /dev/rdsk/c4t0d0
disk 3 0/12/0/0.1.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC

/dev/dsk/c4t1d0 /dev/rdsk/c4t1d0

disk 13 0/12/0/0.2.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC

/dev/dsk/c4t2d0 /dev/rdsk/c4t2d0

disk 6 0/12/0/1.0.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC

/dev/dsk/c5t0d0 /dev/rdsk/c5t0d0

disk 7 0/12/0/1.1.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
/dev/dsk/c5t1d0 /dev/rdsk/c5t1d0

disk 12 0/12/0/1.2.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC

/dev/dsk/c5t2d0 /dev/rdsk/c5t2d0

disk 19 0/12/0/1.3.0 sdisk CLAIMED DEVICE SEAGATE ST118202LC
...
...

From cabling or cmpdisks utility (see below) we know that c4t1d0 and c5t1d0 identify the
same disk.

Extend vg01 using one of the device files:

pvcreate [-f] /dev/rdsk/c4t1d0
vgextend vg01 /dev/dsk/c4t1d0

NOTE: Do not run pvcreate on the other devicefile. Remember that it points to the same disk and this disk has

already been pvcreated.

This is how vgdisplay and pvdisplay report alternate links:

vgdisplay -v vg01
...
...

--- Physical volumes ---
PV Name /dev/dsk/c4t0d0
PV Name /dev/dsk/c5t0d0 Alternate Link
PV Status available
Total PE 542
Free PE 99
Autoswitch On

PV Name /dev/dsk/c4t1d0
PV Name /dev/dsk/c5t1d0 Alternate Link
PV Status available
Total PE 542
Free PE 0
Autoswitch On

pvdisplay /dev/dsk/c4t1d0
--- Physical volumes ---
PV Name /dev/dsk/c4t1d0
PV Name /dev/dsk/c5t1d0 Alternate Link
VG Name /dev/vg01
PV Status available
Allocatable yes
VGDA 2
Cur LV 2

Chapter 16 LVM

March 2002 Chapter 16 / Page 20

PE Size (Mbytes) 32
Total PE 542
Free PE 0
Allocated PE 542
Stale PE 0
IO Timeout (Seconds) default
Autoswitch On

Autoswitch:
With autoswitch flag on (default) LVM always switches back to the primary link if it becomes
available again. Otherwise the same link is used until the next failure.

IO Timeout:
The time that LVM retrys a link failed link is called PV timeout and can be specified using
pvchange:

pvchange -t 120

sets the timeout to 2 minutes. The default is 0, which causes LVM to use the device driver’s
default (usually 30 sec).

Changing PV Link order

To make an alternate link become the primary link (manual switch) use pvchange:
pvchange -s <alternate>

To change it permanently (across VG deacivation) you have to change the order in
/etc/lvmtab:

vgreduce vg01 <primary>
Device file path "/dev/dsk/c0t1d0" is a primary link. Removing
primary link and switching to an alternate link.

vgextend vg01 <primary>

Utility cmpdisks

cmpdisks is an unofficial shell script that collects information about all disks that can be seen
on a system. It displays a sorted list of disks and their corresponding HW paths. cmpdisks
works across multiple systems and is therefore very useful for ServiceGuard environments.
Here’s an example output for two nodes connected to shared storage:

cmpdisks hprtdd32 grcdg319

Scanning host hprtdd32
Scanning host grcdg319

***** LVM-VG: 0557706517-0986307905
1 hprtdd32:c2t0d0 0557706517-0986307878 0/0/2/0.0.0 SEAGATE/ST39103LC (0x00/vg00)

***** LVM-VG: 0630309352-0976295069
1 grcdg319:c2t6d0 0630309352-0976295068 0/0/2/1.6.0 SEAGATE/ST39102LC (0x00/vg00)

Chapter 16 LVM

March 2002 Chapter 16 / Page 21

***** LVM-VG: 0557706517-0986205681
1 grcdg319:c4t1d0 0630309352-0968061502 0/12/0/0.1.0 HP/C5447A (0x02/vgsap)

grcdg319:c5t1d0 0630309352-0968061502 0/12/0/1.1.0 HP/C5447A (0x02/vgsap)
hprtdd32:c4t1d0 0630309352-0968061502 0/6/0/0.1.0 HP/C5447A (0x02/vgsap)
hprtdd32:c5t1d0 0630309352-0968061502 0/6/0/1.1.0 HP/C5447A (0x02/vgsap)

2 grcdg319:c4t0d0 0630309352-0968061503 0/12/0/0.0.0 HP/C5447A (0x02/vgsap)
grcdg319:c5t0d0 0630309352-0968061503 0/12/0/1.0.0 HP/C5447A (0x02/vgsap)
hprtdd32:c4t0d0 0630309352-0968061503 0/6/0/0.0.0 HP/C5447A (0x02/vgsap)
hprtdd32:c5t0d0 0630309352-0968061503 0/6/0/1.0.0 HP/C5447A (0x02/vgsap)

***** LVM-VG: 0630309352-1002790984
1 grcdg319:c4t2d0 0630309352-1002790983 0/12/0/0.2.0 HP/C5447A (n/a)

hprtdd32:c4t2d0 0630309352-1002790983 0/6/0/0.2.0 HP/C5447A (n/a)

In the output above you can see:

• One non-shared disk in vg00 for each node.
• Two shared disks, each having one alternate link in shared VG vgsap on each node.
• One shared disk without alternate link that is not part of a VG.

Offline Diagnostics (ODE)

You need ODE to be able to do HW troubleshouting in the case the system is not able to boot.
The ODE files are LIF files that should be installed in the LIF volume on any bootable disk.

If Online Diagnostics installed (check with swlist OnlineDiag or simply type sysdiag)
you can find the ODE files in a regular file:

lifls -l /usr/sbin/diag/lif/updatediaglif2
volume OFFLIN data size 67748 directory size 8
filename type start size implement created
===
ODE -12960 16 848 0 00/10/24 11:32:30
MAPFILE -12277 864 128 0 00/10/24 11:32:30
SYSLIB -12280 992 353 0 00/10/24 11:32:30
CONFIGDATA -12278 1352 218 0 00/10/24 11:32:30
SLMOD2 -12276 1576 140 0 00/10/24 11:32:30
SLDEV2 -12276 1720 134 0 00/10/24 11:32:30
SLDRV2 -12276 1856 168 0 00/10/24 11:32:30
SLSCSI2 -12276 2024 116 0 00/10/24 11:32:30
MAPPER2 -12279 2144 142 0 00/10/24 11:32:30
IOTEST2 -12279 2288 89 0 00/10/24 11:32:30
PERFVER2 -12279 2384 125 0 00/10/24 11:32:30
PVCU -12801 2512 64 0 00/10/24 11:32:30
SSINFO -12286 2576 2 0 00/10/24 11:32:30

ATTENTION: the file updatediaglif2 is only for pure 64bit systems (e.g. N-Class). For 32bit systems or
systems that support both CPU types (e.g. K-Class) use the file updatediaglif.

The Online Diagnostics bundle can be found on the Support Plus Media. You can write the
ODE files to the LIF volume as follows:
cd /usr/sbin/diag/lif

getconf HW_CPU_SUPP_BITS (the result is either 32, 32/64 or 64)

mkboot -b updatediaglif -p ISL -p AUTO -p HPUX -p LABEL

Chapter 16 LVM

March 2002 Chapter 16 / Page 22

/dev/rdsk/c#t#d# (if 32 or 32/64)
mkboot -b updatediaglif2 -p ISL -p AUTO -p HPUX -p LABEL

/dev/rdsk/c#t#d# (if 64)
(the -p option preserves the specified file so that it is not overwritten)

If you are setting up a mirrored root config you need to install the ODE files also on the
mirror disk else you don’t have ODE utilities like MAPPER2 if you booted there.

In the case that no Online Diagnostics are installed but the ODE files are already on another
boot disk you can copy them using lifcp(1M):

lifcp -T <type> <sourcedevice:file> <targetdevice:file>

The procedure:

1) List the existing LIF files on the original disk

lifls -l /dev/rdsk/c0t6d0
volume ISL10 data size 7984 directory size 8
filename type start size implement created
===
ODE -12960 584 848 0 00/10/24 11:32:30
MAPFILE -12277 1432 128 0 00/10/24 11:32:30
SYSLIB -12280 1560 353 0 00/10/24 11:32:30
CONFIGDATA -12278 1920 218 0 00/10/24 11:32:30
SLMOD2 -12276 2144 140 0 00/10/24 11:32:30
SLDEV2 -12276 2288 134 0 00/10/24 11:32:30
SLDRV2 -12276 2424 168 0 00/10/24 11:32:30
SLSCSI2 -12276 2592 116 0 00/10/24 11:32:30
MAPPER2 -12279 2712 142 0 00/10/24 11:32:30
IOTEST2 -12279 2856 89 0 00/10/24 11:32:30
PERFVER2 -12279 2952 125 0 00/10/24 11:32:30
PVCU -12801 3080 64 0 00/10/24 11:32:30
SSINFO -12286 3144 2 0 00/10/24 11:32:30
ISL -12800 3152 306 0 00/11/08 20:49:59
AUTO -12289 3464 1 0 01/10/16 10:18:16
HPUX -12928 3472 848 0 00/11/08 20:50:00
LABEL BIN 4320 8 0 01/10/16 10:18:14

2) List the existing LIF files on the mirror:

lifls -l /dev/rdsk/c0t5d0
volume ISL10 data size 7984 directory size 8
filename type start size implement created
===
ISL -12800 584 306 0 00/11/08 20:49:59
AUTO -12289 896 1 0 00/11/08 20:49:59
HPUX -12928 904 848 0 00/11/08 20:50:00
PAD -12290 1752 1580 0 00/11/08 20:50:00
LABEL BIN 3336 8 0 01/10/19 16:29:30

NOTE: the PAD file is of no use. It contains just nulls and acts as a padding for alignment reasons.

3) copy the missing ODE LIF files to the mirror:

lifcp -r -T-12960 /dev/rdsk/c0t6d0:ODE /dev/rdsk/c0t5d0:ODE

Chapter 16 LVM

March 2002 Chapter 16 / Page 23

lifcp -r -T-12277 /dev/rdsk/c0t6d0:MAPFILE /dev/rdsk/c0t5d0:MAPFILE
lifcp -r -T-12280 /dev/rdsk/c0t6d0:SYSLIB /dev/rdsk/c0t5d0:SYSLIB
lifcp -r -T-12278 /dev/rdsk/c0t6d0:CONFIGDATA
/dev/rdsk/c0t5d0:CONFIGDATA
lifcp -r -T-12276 /dev/rdsk/c0t6d0:SLMOD2 /dev/rdsk/c0t5d0:SLMOD2
lifcp -r -T-12276 /dev/rdsk/c0t6d0:SLDEV2 /dev/rdsk/c0t5d0:SLDEV2
lifcp -r -T-12276 /dev/rdsk/c0t6d0:SLDRV2 /dev/rdsk/c0t5d0:SLDRV2
lifcp -r -T-12276 /dev/rdsk/c0t6d0: SLSCSI2 /dev/rdsk/c0t5d0:SLSCSI2
lifcp -r -T-12279 /dev/rdsk/c0t6d0:MAPPER2 /dev/rdsk/c0t5d0:MAPPER2
lifcp -r -T-12279 /dev/rdsk/c0t6d0:IOTEST2 /dev/rdsk/c0t5d0:IOTEST2
lifcp -r -T-12279 /dev/rdsk/c0t6d0:PERFVER2 /dev/rdsk/c0t5d0:PERFVER2
lifcp -r -T-12801 /dev/rdsk/c0t6d0:PVCU /dev/rdsk/c0t5d0:PVCU
lifcp -r -T-12286 /dev/rdsk/c0t6d0:SSINFO /dev/rdsk/c0t5d0:SSINFO

now a lifls of the mirror should be identical to the root disk.

Changing the HW Address of a Disk

If you like to move a disk to another physical location this will change the HW path and
therefore the device file. You need to update the LVM configuration to reflect these changes.
This is done by exporting the VG and then importing it using the new device files.
Here’s how to do that:

Note the HW paths and devicefiles of all disks in the affected VG:

vgdisplay -v vg##
ioscan -fnkCdisk

Remove the device files you won’t need anymore and shutdown the system:
rmsf -H <old_hw_path>
shutdown -h 0

Now carry out the hardware modifications and boot the system from the new HW path to
maintenance mode:

ISL> hpux –lm

The new device files should be automatically created during bootup. If this is not the case you
can easily create them using insf(1M):

insf -H <new_hw_path> -e

Now note the VG’s minor number and export it:
ll /dev/*/group
vgexport -v -m /tmp/vg##.map vg##

Import the VG again
mkdir /dev/vg##
mknod /dev/vg##/group c 64 0xXY0000
vgimport -v -m /tmp/vg##.map vg## <new_device_file> ...

NOTE: If you are dealing with a large amount of disks i recommend to use the “-f outfile” option with
vgexport/vgimport. See section Importing and exporting VGs for details.

Chapter 16 LVM

March 2002 Chapter 16 / Page 24

If this is the root VG you need to update the information contained in BDRA:

lvlnboot -r /dev/<rootVG>/lvol3 (lvol1 for <= UX 10.10)
lvlnboot -b /dev/<rootVG>/lvol1 (not for <= UX 10.10)
lvlnboot -s /dev/<rootVG>/lvol2

lvlnboot -d /dev/<rootVG>/lvol2

lvlnboot –v (to ckeck it)

Now activate the VG and check the results:
vgchange -a y vg##
vgdisplay -v vg##

Because it is not allowed to change from maintenance mode to a higher run level you need to
reboot:

shutdown -r 0

LVM and MC/ServiceGuard (Cluster LVM)

In a ServiceGuard environment you have one or more VGs that have disks on the shared bus
which can be accessed from multiple systems in the cluster. So it is very important to
guarantee that a VG is active only on one node at a time or you will easily end up with
inconsistant or corrupted data.

A VG that should be accessable from multiple nodes needs special treatment. You have to
ensure that each node has current information about the VG, i.e:

• /etc/lvmtab
• /dev/vgXY/*
• /etc/lvmconf/vgXY.conf

Any changes to the VG that would affect these files need to be updated to all other nodes that
could potentially activate the VG.

The following table shows which configuration changes affect which files:

affects configuration change /etc/lvmtab /dev/vgXY/ /etc/lvmconf/
adding/removing a PV from the VG Yes No Yes
adding/removing a LV from the VG No Yes Yes
changing LV/PV characteristics (like size) No No Yes

Example: add a disk to a shared VG

On the node where the VG is activated add the PV and generate the mapfile:
pvcreate [-f] /dev/rdsk/c#t#d#
vgextend vgXY /dev/dsk/c#t#d#
vgexport -p -s -m /tmp/vgXY.map vgXY

Chapter 16 LVM

March 2002 Chapter 16 / Page 25

Use ftp or rcp to distribute the mapfile (/tmp/vgXY.map) to the other nodes.
On all other nodes perform the following steps:

Remember the VG minor number:
ll /dev/vgXY/group

If the VG does already exist, export it first and then import it:
vgexport vgXY
mknod /dev/vgXY/group c 64 0xXY0000
vgimport -s -m /tmp/vgXY.map vgXY

NOTE: You may also use the “-f outfile” option of vgexport/vgimport where outfile contains a list of
all devicefiles belonging to the VG. See section Importing and exporting VGs for details.

Backup the LVM configuration:
vgchange -a r vgXY
vgcfgbackup vgXY
vgchange -a n vgXY

See ServiceGuard Chapter for details.

Chapter 16 LVM

March 2002 Chapter 16 / Page 26

Replacing a Failed Disk

In order to replace a failed disk you have to recover the original LVM header onto the new
media. The command vgcfgrestore(1M) writes the backup of the LVM header from the
filesystem (/etc/lvmconf/vgXY.conf) to the disk. If data was mirrored you can easily sync
it to the new disk. If not you have to figure out the LVs that had extents on the disk and
recover the data from your backup.
Replacing a disk in a ServiceGuard environment makes no difference. Even replacing a
cluster lock disk is no problem if the LVM configfile (/etc/lvmconf/vgXY.conf) contains
the information about the cluster lock disk. Consult the ServiceGuard Chapter if you are
unsure.

In the following you find special procedures for mirrored and un-mirrored PVs, for root
and for data VGs and for hot-swap disks.

Identifying the failed disk

First of all you have to figure out which disk actually failed. Do not rely on the output of
LVM’s display commands only. Especially in mirrored configurations you have to be very
careful.

Use the commands ioscan and diskinfo to determine the type of the failed disk. Is it an
internal Seagate Disk or a Lun in a XP Ddisk array?
ioscan -fnCdisk
Class I H/W Path Driver S/W State H/W Type Description
==
disk 0 2/0/1/0/0.0.0 sdisk CLAIMED DEVICE SEAGATE ST318404LC

/dev/dsk/c0t0d0 /dev/rdsk/c0t0d0
disk 1 2/0/1/0/0.1.0 sdisk CLAIMED DEVICE SEAGATE ST318404LC

/dev/dsk/c0t1d0 /dev/rdsk/c0t1d0
disk 3 2/0/2/0/0.4.0 sdisk CLAIMED DEVICE DGC C1300WD

/dev/dsk/c1t4d0 /dev/rdsk/c1t4d0
disk 10 2/0/2/0/0.4.1 sdisk CLAIMED DEVICE DGC C1300WD

/dev/dsk/c1t4d1 /dev/rdsk/c1t4d1
disk 93 2/0/4/0/0.8.0.2.0.0.0 sdisk CLAIMED DEVICE HP
DISK-SUBSYSTEM

/dev/dsk/c10t0d0 /dev/rdsk/c10t0d0
disk 94 2/0/4/0/0.8.0.2.0.1.0 sdisk CLAIMED DEVICE HP
DISK-SUBSYSTEM

/dev/dsk/c10t1d0 /dev/rdsk/c10t1d0
disk 99 2/0/4/0/0.8.0.2.0.6.0 sdisk CLAIMED DEVICE HP
OPEN-3

/dev/dsk/c10t6d0 /dev/rdsk/c10t6d0
disk 100 2/0/4/0/0.8.0.2.0.6.1 sdisk CLAIMED DEVICE HP
OPEN-3

/dev/dsk/c10t6d1 /dev/rdsk/c10t6d1
...
...

diskinfo /dev/rdsk/c10t6d0

SCSI describe of /dev/rdsk/c10t6d0:

vendor: HP

product id: OPEN-3

type: direct access

Chapter 16 LVM

March 2002 Chapter 16 / Page 27

size: 2403360 Kbytes

bytes per sector: 512

NOTE: If you are dealing with a disk that is connected over fibre channel read the section

“How to Replace Disks at Hosts with TachLite HBAs” in the Fibre Channel chapter.

It is always a good idea to try to read from the disk in suspect. Try to read a few MB at first:
dd if=/dev/rdsk/cXtXdX of=/dev/null bs=256k count=10 &

NOTE: 256K is the largest IO request that LVM can handle. Using smaller blocksizes will make dd slower.

Larger Blocksizes are no problem.

If this works then you ensured that the disk itself is at least accessable. But to be sure there is
no media problem you have to read the whole disk:

dd if=/dev/rdsk/cXtXdX of=/dev/null bs=256k

Additionaly you can use MESA diagnostics (mstm command).

Standard (non-hot-swappable) disk

In order to replace a “standard” disk you have to shutdown the system.

Root disk, not mirrored, non-hot-swappable

Assuming that disk /dev/dsk/c0t6d0 in RootVG vg00 is the one that failed.
Follow these steps to replace it:

1. Halt the system

2. Replace the disk

3. Boot from the Ignite-UX make_recovery tape and wait until the system is fully
recovered.

In the case that there is no make_recovery tape available :-(but you have a full backup of
vg00 please proceed to the System Recovery Chapter.

Root disk, mirrored, non-hot-swappable

NOTE: For HP-UX 11.0 be sure to have LVM kernel patch PHKL_20419 or later installed. If not

you should reduce the mirror first (see) in order to avoid problems during resynchronization.
Here’s an example how to reduce the mirror:

for i in lvol8 lvol7 ... lvol1 (specify any mirrored LV in the VG)
> do lvreduce –m 0 /dev/vg00/$i /dev/dsk/c0t6d0
> done

where c0t6d0 is the disk that failed.

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHKL_20419

Chapter 16 LVM

March 2002 Chapter 16 / Page 28

Assuming that disk c0t6d0 in RootVG vg00 is the one that failed and it is properly mirrored
to another bootable disk c0t5d0. Properly mirrored means that there are at least root, boot,
primary swap and a valid LIF header/volume on that disk.

Follow these steps to replace it:

1. Halt the system

2. Replace the disk

3. Boot from the mirror disk into quorum mode
ISL> hpux –lq

4. restore the PV header to the new disk, activate the VG and mount the filesystems:

vgcfgrestore -n vg00 /dev/rdsk/c0t6d0

vgchange -a y vg00 (this may take a while until all data is synced)

5. recreate LIF and BDRA on the new disk (refer to SUBPROCEDURE 1 at the end of
this chapter)

6. locate the LVs that have extents on this disk:
pvdisplay -v /dev/dsk/c0t6d0

any LV that is not mirrored is lost and needs to be recovered from data backup. You
need to create a FS (newfs(1M)) before recovering data.

7. Synchronize the mirrored LVs

although the LVs should all be synced after the activation of the VG its a good idea
to check for stale extents. Verify that all extents are current:
vgdisplay –v vg00 | grep stale

should not report anything. If it does:
vgsync vg00

A single LV can be synced like this:

lvsync /dev/vg00/lvol1

NOTE: Based on timestamps on the disks LVM decides which is the good copy and which is the bad
one so you do not have to specify devicefiles here.

8. Check the results

lvdisplay –v <LV>
vgdisplay –v vg00

Non-root disk, not mirrored, non-hot-swappable

Assuming that disk /dev/dsk/c1t1d0 in VG vg01 is the one that failed.

Chapter 16 LVM

March 2002 Chapter 16 / Page 29

Follow these steps to replace it:

1. Halt the system

2. Replace the disk

3. Boot up to multi-user mode as usual

4. restore the PV header to the new disk and activate the VG:

vgcfgrestore -n vg01 /dev/rdsk/c1t1d0

vgchange -a y vg01

5. locate the LVs that have extents on this disk:
pvdisplay -v /dev/dsk/c1t1d0

Create filesystems (newfs(1M)) for each LV (there may be LVs that do not have a FS
such as ORACLE datafiles) and recover them from backup.

Non-root disk, mirrored, non-hot-swappable

NOTE: For HP-UX 11.0 be sure to have LVM kernel patch PHKL_20419 or later installed. If not

you should reduce the mirror first in order to avoid problems during resynchronization.
Here’s an example how to reduce the mirror:

for i in lvol1 lvol2 ... lvolX (specify any mirrored LV in the VG)
> do lvreduce –m 0 /dev/vgXY/$i /dev/dsk/c0t6d0
> done

where c0t6d0 is the disk that failed.

Assuming that disk c1t1d0 in a non-root VG vg01 is the one that failed and some or all of the
LVs are mirrored to other disks.

Follow these steps to replace it:

1. Halt the system

2. Replace the disk

3. Boot up to multi-user mode as usual

4. restore the PV header to the new disk and activate the VG:

vgcfgrestore -n vg01 /dev/rdsk/c1t1d0

vgchange -a y vg01 (this may take a while until all data is synced)

5. locate the LVs that have extents on this disk:
pvdisplay -v /dev/dsk/c1t1d0

any LV that is not mirrored is lost and needs to be recovered from backup. You need

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHKL_20419

Chapter 16 LVM

March 2002 Chapter 16 / Page 30

to create a FS (newfs(1M)) before recovering data.

6. Synchronize the mirrored LVs

although the LVs should all be synced after the activation of the VG its a good idea
to check for stale extents. Verify that all extents are current:
vgdisplay –v vg01 | grep stale

should not report anything. If it does:
vgsync vg01

A single LV can be synced like this:

lvsync /dev/vg01/lvdata

NOTE: Based on timestamps on the disks LVM decides which is the good copy and which is the bad
one so you do not have to specify devicefiles here.

7. Check the results

lvdisplay –v <LV>
vgdisplay –v vgXY

Hot-swappable disks

Hot swappable disks are disks that can be plugged while the system is running which makes
replacing a failed disk easy. The replacement disk has to be of the same type as the failed disk
because the disk driver’s internal information about the replaced disk may not be updated.
The name of the vendor (HP, DEC, SEAGATE) is of no consideration. The new disk has to
have the same capacity and blocksize (bytes per sector). Check this with diskinfo(1M).

NOTE: Be aware that not every disk module supports hot-swap. The procedure is not allowed e.g. for single

ended (SE) disks.

Turn immediate reporting off
To avoid the loss of data you should verify that immediate reporting is disabled for the disk:

scsictl –a /dev/rdsk/c#t#d#
immediate_report = 0

If it is not 0, which is the default for servers, change the setting:

scsictl –m ir=0 /dev/rdsk/c#t#d#

SCSI Resets during the hot swap procedure
After inserting a hot swappable disk SCSI bus reset may occure. You will see a message like
this in the message buffer:

dmesg
...
...
SCSI: Reset detected -- bus: 0

lbp->uPhysScript: c6c000
lbp->state: 44

Chapter 16 LVM

March 2002 Chapter 16 / Page 31

lbp->offset: 108
PtCmd [9350d0]: 0a00000a

lsp: 0
lbp->owner: 0
Register values from most recent chip interrupt:

istat: 02, sist0: 02, sist1: 00, dstat: 80
dsps: ffffff38

Register values now:
istat: 0
dsp: c6c148, dcmddbc: 54000000, dsps: ffffff38
dnad: c6c148
dsa: 800, temp: c6c368, scratch: ffff007c
scntl3: 1b, sxfer: 8, sbcl: 0, sfbr: 8
dfifo: 0, sstat0/x: 2, sstat1/y: f, sstat2/z: a
ctest7: 0, ctest3/x: 40
sien0: 8f, sien1: 87, dien: 7f

scratch_lsp: 0
Pre-dcmddbc script dump [935130]:

60000040 00000000 48000000 00000000
Script dump [935140]:

54000000 ffffff38 740a0f00 00000000
PtCmd [9350d0]: 0a00000a

Do I have to reduce the mirror?

Unplugging a disk online and replugging the same mech is not a problem but inserting a
different disk instead is not always supported without reducing the mirror because
LVM may not recognize that the PV was exchanged by a new one or the new disk may
already have a valid LVM header.

Anyhow – under certain circumstances you do not have to reduce the mirrors.
You do not have to reduce the mirror if the PV is unattached. A PV is unattached if the VG is
not active or LVM already found the PV to be defective when the VG was activated. In the
latter case vgchange would have printed the following message on the console:

vgchange: Warning: Couldn't attach to the volume group physical volume
"/dev/dsk/c#t#d#":
the path of the physical volume refers to a device that does not
exist, or is not configured into the kernel.

If the status at vgchange time is unknown, you may check if this occurred using vgdisplay. If
the disk was defective at vgchange time, the following messages will be printed one or more
times:

vgdisplay <VG name>
vgdisplay: Warning: Couldn’t query physical volume “/dev/dsk/c#t#d#"
the specified path does not correspond to physical volume attached to
the volume group.
vgdisplay: Warning: Couldn’t query all of the physical volumes

If the above does not apply the PV is considered to be attached.

You do not necessarily have to reduce the mirrors if the PV is attached but:

vgdisplay –v reports the PV as unavailable., i.e LVM recognized that the disk has gone
 and

you’re 100% sure that the new disk does not have a valid LVM header

Chapter 16 LVM

March 2002 Chapter 16 / Page 32

 and

LVM kernel patch PHKL_23612 (or newer) is installed (for UX 10.20)
LVM kernel patch PHKL_20419 (or newer) is installed (for UX 11.00)

try the following to get an attached PV to an unavailable state:
Pull the disk out and run vgchange -a y vgXY (use –a e for exclusive activation in
ServiceGuard environments). This should force LVM to consider the missing PV to be
unavailable (check with pvdisplay!) which ensures that the newly replaced disk is recognised
as fresh and stale (after being vgvfgretore’d). In this case the mirror does not have to be
reduced.

Assuming that disk cXtYdZ in VG vgXY is the one that failed.

Procedure 1: not mirrored, hot-swappable

If it is the root disk that failed follow the procedure for “standard” disks (root, not mirrored)
above, else follow these steps:

1. replace the disk module and verify that it is recognized by the OS with ioscan(1M)

2. restore the PV header to the new disk and reactivate the VG:

vgcfgrestore -n vgXY /dev/rdsk/cXtYdZ

vgchange -a y vgXY

3. locate the LVs that have extents on this disk:
pvdisplay -v /dev/dsk/cXtYdZ

Create filesystems (newfs(1M)) for each LV (there may be LVs that do not have a FS
such as Informix chunks) and recover them from backup.

Procedure 2: mirrored, hot-swappable

1. if the PV is attached, reduce the mirror, e.g. with:

for i in lvol1 lvol2 ... (specify any mirrored LV in the VG)
> do lvreduce –m 0 /dev/vgXY/$i /dev/dsk/cXtYdZ
> done

check with lvdisplay –v <LV>

ATTENTION:
If the LV uses the distributed allocation policy (aka extent based striping) you need to specify ALL
PVs that you want to remove the mirror copy from. There is not (yet) an option that lets you specify
the PVG as argument to lvreduce but there will be a LVM commands patch (maybe end of 2001). To
check if the LV uses distributed allocation policy: lvdisplay /dev/vgXY/lvXY | grep

Allocation should show distributed.

2. replace the disk module and verify that it is recognized by the OS with ioscan(1M)

3. restore the LVM header to the new disk and reactivate the VG:

http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHKL_23612
http://wtec.cup.hp.com/patches-bin/parse/patches-info?Patch=PHKL_20419

Chapter 16 LVM

March 2002 Chapter 16 / Page 33

vgcfgrestore -n vgXY /dev/rdsk/cXtYdZ

vgchange -a y vgXY (if you did not reduce the mirror wait until data is synced)

4. if it is a root disk, recreate LIF and BDRA on the new disk (refer to
SUBPROCEDURE 1)

5. locate the LVs that have extents on this disk:
pvdisplay -v /dev/dsk/cXtYdZ

any LV that is not mirrored is lost and needs to be recovered from data backup.
Don’t forget to create a FS (newfs(1M)) before recovering data.

6. Recreate the mirror if you reduced it before, else run vgsync vgXY, e.g.:

for i in lvol1 lvol2 ... (specify LV in the VG you want to mirror)
> do lvextend -m 1 /dev/vgXY/$i /dev/dsk/cXtYdZ
> done

7. Check the results
lvdisplay –v <LV>
vgdisplay –v vgXY

Removing a „ghost disk“ From a VG - the PV Key

What is a ghost disk

You may come into a situation where you have to remove a PV from a VG that is failed or not
even physically connected but still recorded in the lvmtab. Such a PV is called a “ghost disk”
or “phantom disk”. You can get a ghost disk if the disk failed and the VG was activated again,
maybe the system was rebooted.

If you cannot use vgcfgrestore to write the original LVM header back to the new disk because
a valid LVM configuration backup file (/etc/lvmconf/vgXY.conf[.old]) is missing or
corrupted you have to remove that PV from the VG (vgreduce), create a new LVM header
(pvcreate) and add it to the VG again (vgextend).

NOTE: In such situations the vgcfgrestore command may fail to restore the LVM header, complaining about a

‘Mismatch between the backup file and the running kernel’. If you are 100% sure that your backup is
valid you may override this check using the –R option.

In order to remove a PV from a VG you have to free it first, i.e. remove all logical extents
from it. If the LVs on such a disk is not mirrored data is lost anyway. If it is mirrored you
need to reduce the mirror, remove the PV run pvcreate and add it again.

A “ghost disk” can be identified if vgdisplay reports more current PVs than active ones.
Additionally LVM commands may complain about the missing PVs:

vgdisplay vg01
vgdisplay: Warning: couldn't query physical volume "/dev/dsk/c0t11d0":

Chapter 16 LVM

March 2002 Chapter 16 / Page 34

The specified path does not correspond to physical volume attached to
this volume group

vgdisplay: Couldn't query the list of physical volumes.
--- Volume groups ---
VG Name /dev/vg01
VG Write Access read/write
VG Status available
Max LV 255
Cur LV 3
Open LV 3
Max PV 16
Cur PV 2 number of PVs recorded in the lvmtab
Act PV 1 number of PVs recorded in the kernel
Max PE per PV 1016
VGDA 2
PE Size (Mbytes) 4
Total PE 511
Alloc PE 38
Free PE 473
Total PVG 0

The PV c0t11d0 is still recorded in lvmtab so it’s a ghost disk:

strings /etc/lvmtab
/dev/vg01
/dev/dsk/c0t0d2
/dev/dsk/c1t2d2
/dev/dsk/c0t11d0

Running vgreduce with the -f option would remove all PVs that are “free”, i.e there is no LV
having extents on that PV. Otherwise - if the PV is not free vgreduce -f reports an extent map
to identify the associated LVs:

vgreduce -f vg01
skip alternate link /dev/dsk/c1t2d2
vgreduce: Couldn't query physical volume "/dev/dsk/c0t11d0":
The specified path does not correspond to physical volume attached to
this volume group

Not all extents are free. i.e. Out of 508 PEs, only 500 are free.
You must free all PEs using lvreduce/lvremove before the PV can be
removed.
Example: lvreduce -A n -m 0 /dev/vg01/lvol1.

lvremove -A n /dev/vg01/lvol1.
Here's the map of used PEs

--- Logical extents ---
LE LV PE Status 1
0000 lvol1 0000 ???
0001 lvol1 0001 ???
0002 lvol1 0002 ???
0003 lvol1 0003 ???
0004 lvol1 0004 ???
0005 lvol1 0005 ???
0006 lvol1 0006 ???
0007 lvol1 0007 ???

In this case there is lvol1 having extents on c0t11d0. You have to remove these extents from
the PV. If the LV is mirrored use lvreduce to remove the mirrored extents, if the LV is not
mirrored, data is lost anyway and you have to use lvremove to delete the LV:

Chapter 16 LVM

March 2002 Chapter 16 / Page 35

Check the LV state:

lvdisplay -v /dev/vg01/lvol1
lvdisplay: Warning: couldn't query physical volume "/dev/dsk/c0t11d0":
The specified path does not correspond to physical volume attached to
this volume group

lvdisplay: Couldn't query the list of physical volumes.
--- Logical volumes ---
LV Name /dev/vg01/lvol1
VG Name /dev/vg01
LV Permission read/write
LV Status available/stale
Mirror copies 1
Consistency Recovery MWC
Schedule parallel
LV Size (Mbytes) 32
Current LE 8
Allocated PE 16
Stripes 0
Stripe Size (Kbytes) 0
Bad block on
Allocation strict
IO Timeout (Seconds) default

--- Distribution of logical volume ---
PV Name LE on PV PE on PV
/dev/dsk/c0t0d2 8 8

--- Logical extents ---
LE PV1 PE1 Status 1 PV2 PE2 Status 2
00000 ??? 00000 stale /dev/dsk/c0t0d2 00000 current
00001 ??? 00001 stale /dev/dsk/c0t0d2 00001 current
00002 ??? 00002 stale /dev/dsk/c0t0d2 00002 current
00003 ??? 00003 stale /dev/dsk/c0t0d2 00003 current
00004 ??? 00004 stale /dev/dsk/c0t0d2 00004 current
00005 ??? 00005 stale /dev/dsk/c0t0d2 00005 current
00006 ??? 00006 stale /dev/dsk/c0t0d2 00006 current
00007 ??? 00007 stale /dev/dsk/c0t0d2 00007 current

You can see, that the LV is mirrored.

Since the disk is not available anymore the PV is not accessable by it’s decivefile
/dev/dsk/c0t11d0 as usual. Alternatively you can access it by it’s PV key.

The PV key

The PV key of a disk indicates it’s order in the VG. The first PV has the key 0, the second has
the key 1, etc. This does not necessarily have to be the order of appearance in lvmtab altough
it is usually like that, at least when a VG is initially created.

The PV key can be used to address a PV that is not attached to the VG, e.g. because it is no
longer available through it’s device file due to a HW problem. If a LV has extents on that PV
the key can be obtained using the -k option of lvdisplay:

lvdisplay –v –k /dev/vg01/lvol1
...

Chapter 16 LVM

March 2002 Chapter 16 / Page 36

...
--- Logical extents ---
LE PV1 PE1 Status 1 PV2 PE2 Status 2
00000 0 00000 stale 1 00000 current
00001 0 00001 stale 1 00001 current
00002 0 00002 stale 1 00002 current
00003 0 00003 stale 1 00003 current
00004 0 00004 stale 1 00004 current
00005 0 00005 stale 1 00005 current
00006 0 00006 stale 1 00006 current
00007 0 00007 stale 1 00007 current

Compared to the output above the ??? have been replaced with the PV key (= 0).

NOTE: You can use the xd(1) command to display the PV key because it is stored at a fixed position in the

LVM header, exactly 8222 bytes from the beginning of the disk:
xd –j8222 -N2 /dev/rdsk/c1t6d0

NOTE: Sometimes you see messages like PV[X] is POWERFAILED in syslog. In this case X is the PV key.

Now reduce the mirror with the obtained key as argument:

lvreduce –k –m 0 /dev/vg01/lvol1 0

After that the PV can be removed from the VG:
vgreduce -f vg01
skip alternate link /dev/dsk/c1t2d2
vgreduce: Couldn't query physical volume "/dev/dsk/c0t11d0":
The specified path does not correspond to physical volume attached to
this volume group

PV with key 0 sucessfully deleted from vg vg01
Repair done, please do the following steps.....:
1. save /etc/lvmtab to another file
2. remove /etc/lvmtab
3. use vgscan(1m) -v to re-create /etc/lvmtab
4. NOW use vgcfgbackup(1m) to save the LVM setup

Now do exactly what the output above indicates in order to remove the PV from the lvmtab:
mv /etc/lvmtab /etc/lvmtab.org
vgscan –v
...
...
Scan of Physical Volumes Complete.
*** LVMTAB has been created successfully.
*** If PV links are configured in the system.
*** Do the following to resync information on disk.
*** #1. vgchange -a y
*** #2. lvlnboot -R

Check it:
strings /etc/lvmtab
/dev/vg01
/dev/dsk/c0t0d2
/dev/dsk/c1t2d2

Reactivate the VG and backup the LVM config:

Chapter 16 LVM

March 2002 Chapter 16 / Page 37

vgchange -a y vg01
vgcfgbackup vg01

Now you can run pvcreate on the PV, add it to the VG again and recreate the mirror:
pvcreate [-f] /dev/rdsk/c0t11d0
vgextend vg01 /dev/dsk/c0t11d0
lvextend –m 1 /dev/vg01/lvol1 /dev/dsk/c0t11d0

If the LV was not mirrored, recreate the LV (lvcreate), create a FS on it (newfs(1M)) and
recover the data from the backup.

Chapter 16 LVM

March 2002 Chapter 16 / Page 38

Increasing the Root LVs

Usually you cannot easily add space to the root LVs (/ or /stand) because they are contiguous.

using Ignite-UX

The recommended procedure to add space to the root LVs is to use an bootable Ignite-UX
make_recovery Tape (refer to the Ignite-UX chapter for details).
The use of an Ignite tape is recommended because it is officially supported, easy to do, save
and fast. To create a recovery tape containg the entire root VG just insert a DDS tape into the
drive an run:

make_tape_recovery –vA [-d /dev/rmt/Xm]

If for some reason the above does not apply you can use this unsupported procedure:

using the unofficial procedure
NOTE: this procedure is for HP-UX 10.20 and greater.

Since the root LV has to be contiguous it is not possible to increase it because it is not the last
LV on the root disk. Anyway - it is possible to do it without using Ignite-UX if there is an
additional free disk available - c1t1d0 in the following example:

Create a new VG vgroot with c1t1d0:

pvcreate -B /dev/rdsk/c1t1d0
mkdir /dev/vgroot
ll /dev/*/group (check for unused minor)
mknod /dev/vgroot/group c 64 0x010000
vgcreate vgroot /dev/dsk/c1t1d0

Create LIF and BDRA on c1t1d0 for vgroot (refer to SUBPROCEDURE 1)

Create LVs for boot, swap and root (in that order):

lvcreate -C y -r n vgroot
lvextend -L 100 /dev/vgroot/lvol1

lvcreate -C y -r n vgroot
lvextend -L 100 /dev/vgroot/lvol2

lvcreate -C y -r n vgroot
lvextend -L 300 /dev/vgroot/lvol3

Create LVs for /usr, /opt, /var, /tmp, /etc, /home, etc using sizes equal or larger than the
ones in vg00 respectively:

lvcreate vgroot
lvextend -L 500 /dev/vgroot/lvol4

Chapter 16 LVM

March 2002 Chapter 16 / Page 39

...

Create the filesystems:

newfs -F hfs /dev/vgroot/rlvol1
newfs -F vxfs /dev/vgroot/rlvol3
newfs -F vxfs /dev/vgroot/rlvol4
...

Mount the filesystems:

mkdir /new_root /new_usr /new_stand …
mount /dev/vgroot/lvol1 /new_stand
mount /dev/vgroot/lvol3 /new_root
mount /dev/vgroot/lvol4 /new_usr
...

Copy the data:
cd /
find . -xdev -depth | cpio -pvdlmax /new_root
cd /stand
find . -xdev -depth | cpio -pvdlmax /new_stand
cd /usr
find . -xdev -depth | cpio -pvdlmax /new_usr
...

bdf

Modify the fstab. Replace vg00 with vgroot:
vi /new_root/etc/fstab

/dev/vgroot/lvol1 /stand hfs defaults 0 0 # new boot LV
/dev/vgroot/lvol3 / vxfs delaylog 0 0 # new root LV
/dev/vgroot/lvol4 /usr vxfs delaylog 0 0 # new /usr LV
...

Change the device files for the root disk in /stand/bootconf:
cat /stand/bootconf
l /dev/dsk/c1t6d0

replace it with c1t1d0

Reboot from the disk c1t1d0:
setboot -b <HW path of c1t1d0>
shutdown -r 0

Backup the LVM Config:
vgcfgbackup vgroot

Remove the old root VG:
vgchange -a n vg00
vgexport vg00

Chapter 16 LVM

March 2002 Chapter 16 / Page 40

If you like to rename vgroot to vg00:
Boot to maintenance mode:

ISL> hpux -lm

Export vgroot and import it as vg00:
/sbin/vgexport vgroot
/sbin/mkdir /dev/vg00
/sbin/mknod /dev/vg00/group c 64 0x000000
/sbin/vgimport vg00 /dev/dsk/c1t1d0

Activate vg00 and mount the filesystems:
/sbin/vgchange -a y vg00
/sbin/mount /dev/vg00/lvol3 /
/sbin/mount /dev/vg00/lvol1 /stand
/sbin/mount /dev/vg00/lvol4 /usr
...

Modify the fstab. Replace vgroot with vg00 again:
vi /etc/fstab

Reboot:
shutdown -r 0

Chapter 16 LVM

March 2002 Chapter 16 / Page 41

SUBPROCEDURE 1: create LIF and BDRA on the disk

REMARK: disk does not need to be pvcreate’d yet.

1. Write LIF header and LIF files (ISL, AUTO, HPUX, LABEL):
mkboot -l /dev/rdsk/c#t#d#
lifls –l /dev/rdsk/c#t#d# (to ckeck it)

2. Write content of AUTO File (may be skipped):
mkboot -a hpux /dev/rdsk/c#t#d#
lifcp /dev/rdsk/c#t#d#:AUTO - (to ckeck it)

3. Install ODE files (may be skipped):
cd /usr/sbin/diag/lif

getconf HW_CPU_SUPP_BITS (the result is either 32, 32/64 or 64)

mkboot -b updatediaglif -p ISL -p AUTO -p HPUX -p LABEL
/dev/rdsk/c#t#d# (if 32 or 32/64)

mkboot -b updatediaglif2 -p ISL -p AUTO -p HPUX -p LABEL
/dev/rdsk/c#t#d# (if 64)

(the -p option preserves the specified file so that it is not overwritten)

Refer to section Offline Diagnostics (ODE) if you have problems with this.

4. Write content of LABEL file,i.e set root, boot, swap and dump device:
NOTE: This step can be omitted if you replace a failed mirror disk. Then this information has already

been restored by vgcfgrestore. To be sure to have the latest information on the disk just do the
following steps.

lvlnboot -r /dev/<rootVG>/lvol3 (lvol1 for <= UX 10.10)
lvlnboot -b /dev/<rootVG>/lvol1 (not for <= UX 10.10)
lvlnboot -s /dev/<rootVG>/lvol2

lvlnboot -d /dev/<rootVG>/lvol2

lvlnboot –v (to ckeck it)

Chapter 16 LVM

March 2002 Chapter 16 / Page 42

Commands Overview

command desciption
vgcreate create a new VG
vgdisplay display information about the VG
vgchange activate/deactive a VG or change parameter of a VG
vgextend add a new PV to the VG
vgreduce remove a PV from the VG
vgremove remove a VG (better use vgexport)
vgcfgbackup backup the LVM header of a disk to a file
vgcfgrestore restore the LVM header from a file to a disk
vgexport remove the info of a VG from the system
vgimport create a previously exported VG on this system
vgscan recontruct /etc/lvmtab from the LVM headers on disk
vgchgid change the VG-ID of a VG (needed for XPs)
vgsync synchronize all mirrored LVs in the VG

lvcreate create a new LV
lvdisplay display information about LV
lvchange change characteristics of a LV
lvextend increase the size of LV / add a mirror copy to LV
lvreduce decrease the size of LV / remove a mirror copy from LV
lvremove remove the LV
lvspit split a mirror copy of a LV (results in a separate LV)
lvmerge merge a splitted mirror copy of a LV
lvsync synchronize a mirrored LV
lvlnboot set info about root, boot, swap, dump LVs in the BDRA
lvrmboot delete info about root, boot, swap, dump LVs from BDRA

pvcreate initialize a new disk for LVM
pvdisplay display information about PV within VG
pvchange change characteristics of a PV
pvmove move PEs of a LV from one PV to another

NOTE: All LVM commands are hard-linked to the same single executable:

ll /usr/sbin/vgchange
-r-sr-xr-x 31 root sys 548864 Oct 18 20:17 /usr/sbin/vgchange

ll /usr/sbin/pvmove
-r-sr-xr-x 31 root sys 548864 Oct 18 20:17 /usr/sbin/pvmove

ll /usr/sbin/lvextend
-r-sr-xr-x 31 root sys 548864 Oct 18 20:17 /usr/sbin/lvextend

	Chapter 16�-�LVM
	Terminology	3
	LVM Structural Information
	PVRA, VGRA and BDRA
	LIF Header and LIF Volume
	PV-ID and VG-ID
	vgcfgbackup(1M)
	/etc/lvmtab and vgscan(1M)

	LVM Related Parameters and Limitations
	LVM parameters
	Supported file and file system sizes

	Display Commands
	Information on VGs
	Information on PVs
	Information on LVs

	LVM Basic Functionality
	Adding a new PV / VG / LV
	Modifying a PV / VG / LV
	Removing a PV / VG / LV
	Moving physical extents
	Importing and exporting VGs

	MirrorDisk/UX
	Basic functionality
	Physical Volume Groups - PVGs
	Root Mirror

	PV Links
	What is it?
	Configuring PV Links
	Changing PV Link order
	Utility cmpdisks

	Offline Diagnostics (ODE)
	Changing the HW Address of a Disk
	LVM and MC/ServiceGuard (Cluster LVM)
	Replacing a Failed Disk
	Identifying the failed disk
	Standard (non-hot-swappable) disk
	Hot-swappable disks

	Removing a „ghost disk“ From a VG - the PV Key
	What is a ghost disk
	The PV key

	Increasing the Root LVs
	using Ignite-UX
	using the unofficial procedure

	SUBPROCEDURE 1: create LIF and BDRA on the disk
	Commands Overview

