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Overview 
Physical memory is a finite resource. It is also a shared resource with many processes attempting to 
access this finite resource. Not only do processes need memory in order to run, the HP-UX operating 
system (or kernel) also needs spaces for its critical resources and tables.  Some of these resources are 
static (do not change in size) and some are dynamic.  Many of these resources can be configured to 
be a certain size or configured to be limited by a certain value.   

While there are many possible system resources that can take up memory, this document attempts to 
identify some of the common misconfigured HP-UX resources and how they impact your system. 

There are many reasons why an HP-UX resource may be misconfigured. The most common reason is 
that customer environments are unique.  There is no one set of tunables that is best for all systems.  
Understanding how these resources are managed and how they impact memory utilization is key to a 
successful configuration. 

This document discusses the following topics: 

• The HFS Inode Cache 

• The HP-UX Buffer Cache 

• The JFS Inode Cache 

• The JFS Metadata Buffer Cache 

• Semaphores Tables 
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The HFS Inode Cache 
With the introduction of the Journaled File System (JFS), many systems now use the High Performance 
File System (HFS) for the boot file system (/stand) only. Since the JFS inode cache is managed 
separately from the HFS inode cache, you may need to adjust the size of your HFS inode cache. 

This section addresses the following questions regarding the HFS inode cache: 

• What is an inode cache? 

• How is the HFS inode cache managed? 

• How much memory is required for the HFS inode cache? 

• What dependencies are there on the HFS inode cache? 

• Are there any guidelines for configuring the HFS inode cache? 
 

What is an Inode Cache? 
An inode cache is simply a holding location for inodes from disk. Each inode in memory is a superset 
of data that contains the inode from disk. The disk inode stores information for each file, such as the 
file type, permissions, timestamps, size of file, number of blocks, and block map. The in-memory 
inode stores the on-disk inode information along with overhead used to manage the inode in memory. 
This information includes pointers to other structures, pointers used to maintain linked lists, the inode 
number, lock primitives, and other related information. 

 
 
The inode cache is the collection of in-memory inodes with its various linked lists used to manage the 
inodes. Once the inode is brought into memory, subsequent access to the inode can be done through 
memory without having to read or write it to disk. 

One inode cache entry must exist for every file that is opened on the system. If the inode table fills up 
with active inodes, the following error will be seen on the console and in the syslog file and the 
open() system call will fail: 

inode table is full 

Once the last close is done on a file, the inode will be put on a free list but it is not necessarily 
removed from the cache. The inode cache may contain some files that are closed, so if the file is 
reopened a disk access will not occur because the inode is already in memory. 

The HFS Inode Cache is a Static Cache 
The HFS inode cache is a statically sized table built during bootup. It is simply an array of in-memory 
HFS inodes, which is hashed for quick lookups into the table. Inodes are either in use or on the free 
list. It is common for the HFS inode cache to appear full since even closed files are maintained in the 
HFS inode cache. 
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The size of the cache is determined by the ninode tunable. Note that the tunable only sizes the HFS 
inode cache, and does not affect the JFS inode cache. The tunable also sizes the HFS inode hash 
table, which is the previous “power of 2” based on ninode. For example, if the ninode tunable is 
configured for 1500 inodes, then the hash table will have 1024 hash entries (since 1024 is the 
previous power of 2 to 1500). 

 
When an inode lookup is performed, the device and inode number are both used to hash into the 
inode hash table. From the hash header, a linked list of inodes that hash to the same hash header is 
analyzed to see if the desired inode is found. If the desired inode is found, use the inode in memory. 

If the desired inode for the file is not found, reuse the least recently used inode, which is the first inode 
on the free list. The inode information on disk is then read into this newly obtained inode. If there are 
no inodes on the free list, the system call will fail with the “inode table is full” message. 

Determining the Memory Cost of the HFS Inode Cache 
You can determine the cost of the HFS inode cache table by identifying the size of the inode hash 
table and the actual cache of inodes. Note that the inode cache is simply an array of vnode/inode 
structures (the vnode is the Virtual File System layer part). Since the vnode is actually part of the 
inode, you only need to consider the size of the inode. You can use the following table to identify the 
number of bytes needed per entry for each structure. 

 11i v1.5 11.0 32-bit 11.0 64-bit 11i v1 32-bit 11i v1 64-bit 11i v2 

inode 336 336 488 367 496 576 

hash entry     8     8   16     8   16   16 

 
Using the previous table, you can calculate the memory cost of the HFS inode cache. For example, if 
ninode is configured at 10,000 on an HP-UX 11i v1 64-bit system, then the system would use 4844 
Kb for the HFS inode table ( 496*10000 / 1024), and 128 Kb for the HFS hash table (previous 
power of 2 (8192) * 16 / 1024). 

The HFS Inode Cache and the DNLC 
The ninode tunable used to configure the HFS inode cache size can also impact the size of the 
Directory Name Lookup Cache (DNLC). The size of the DNLC used to be entirely dependent on the 
value of ninode. However, this caused some problems since the DNLC was used by HFS and non-
HFS file systems (such as JFS). For example, even if the /stand file system was the only HFS file 
system, a customer would have to configure ninode very large in order to get a large enough DNLC 
to handle the JFS files. 
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The dependency on the ninode tunable is reduced with the introduction of the following two 
tunables: 

• ncsize — Introduced with PHKL_18335 on HP-UX 10.x. Determines the size of the Directory 
Name Lookup Cache independent of ninode. 

• vx_ncsize — Introduced in HP-UX 11.0. Used with ncsize to determine the overall size of the 
DNLC. 

On HP-UX 11i v1 and earlier, while you can tune ncsize independently of ninode the default value 
is still dependent on ninode, which is calculated as follows: 

(NINODE+VX_NCSIZE)+(8*DNLC_HASH_LOCKS) 

On HP-UX 11i v2 and later, the default value for ncsize is 8976. 

Beginning with JFS 3.5 on HP-UX 11i v1, the DNLC entries for JFS files are maintained in a separate 
JFS DNLC, which is sized by vx_ninode; therefore, vx_ncsize can be set to 0. On HP-UX 11i v2, 
the vx_ncsize parameter has been removed. 

Configuring Your HFS Inode Cache 
On HP-UX 11i v1 and earlier, the default size of the HFS inode cache is based on a number of 
tunables, most notably nproc, which is calculated as follows: 

((NPROC+16+MAXUSERS)+32+(2*NPTY) 

On HP-UX 11i v2 and later, the default size of ninode is 4880. 

However, some systems will need to configure a larger HFS inode cache, and some systems will need 
to configure a smaller cache. The first thing you need to remember is how many HFS file systems you 
presently have. If the boot file system (/stand) is your only HFS file system, then you can configure 
ninode with a very low size (maybe 200-400). If you configure a small HFS inode cache, be sure 
that the DNLC is configured appropriately for other file system types (such as NFS) by configuring the 
ncsize tunable. 

At a minimum, you need to configure the HFS inode cache so that it is large enough to hold all of the 
HFS files that are open at any given instance in time. For example, you may have 200,000 HFS 
inodes, but only 1000 are simultaneously opened at the same time.  If so, give your system some 
headroom and configure ninode to be 4000. 

If you use mostly HFS files systems, the default value of ninode is still good for many systems. 
However, if the system is used as a file server, with random files opened repeatedly (for example as a 
Web server, mail server, or NFS server), then you may consider configuring a larger ninode value 
(perhaps 40,000-80,000). When configuring a large ninode cache, remember the memory 
resources that will need to be allocated. 

6 



The HP-UX Buffer Cache 
The HP-UX buffer cache configuration can be confusing, and the HP-UX buffer cache is frequently over 
or under configured.  Understanding how the HP-UX buffer cache is maintained and used can help 
you determine the proper configuration for your application environment. 

This section addresses the following questions regarding the HP-UX 11i v1 and HP-UX 11i v2 buffer 
cache: 

• What is the buffer cache? 

• How does a static buffer cache differ from a dynamic buffer cache? 

• How does the buffer cache work? 

• How much memory is required for the buffer cache and its related structures? 

• What are the advantages and disadvantages of using the buffer cache? 

• Can the buffer cache be bypassed? 

• Are there any guidelines for configuring the buffer cache? 

Note that the Unified File Cache (UFC) introduced in HP-UX 11i v3 replaces the traditional HP-UX 
buffer cache for caching of file data.   He HP-UX buffer cache is still used to cache metadata (non-user 
file data) for non-VxFS filesystems.    Therefore, this section only applies to HP-UX 11i v2 and earlier.   

What is the Buffer Cache? 
The buffer cache is an area of memory where pages from the secondary storage devices are stored. 
The buffer cache is used to reduce access to the secondary storage devices by storing frequently 
accessed pages in memory. 
 

 

Once the file data is in memory, subsequent access can be performed in memory, without the need to 
access the secondary storage device. 

Static Buffer Cache Versus Dynamic Buffer Cache 
By default, the buffer cache is dynamic so that it can expand or shrink in size over time. A dynamic 
buffer cache is tuned by setting the nbuf and bufpages kernel tunable parameters to zero, and by 
setting the minimum and maximum ranges as a percentage of memory, dbc_min_pct and 
dbc_max_pct respectively.  The default values are: 

dbc_max_pct 50 
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dbc_min_pct  5 

The dbc_min_pct tunable cannot be less than 2 and dbc_max_pct cannot be greater than 90. 
The dbc_min_pct and dbc_max_pct tunables are dynamic on HP-UX 11i v2 and can be modified 
without a system reboot. 

When the system is initially booted, the system allocates dbc_min_pct (the default is 5 percent) of 
memory for buffer pages (each page is 4,096 bytes).  The system also allocates one buffer header for 
every two buffer pages. The size of the buffer cache will grow as new pages are brought in from disk. 
The buffer cache can expand very rapidly, so that it uses the maximum percentage of memory 
specified by the dbc_max_pct tunable. A large file copy or a backup are operations that can cause 
the buffer cache to quickly reach its maximum size. While the buffer cache expands quickly, it 
decreases in size only when there is memory pressure. 

You can configure a static buffer cache to a fixed size by setting either nbuf or bufpages. Setting 
nbuf specifies the number of buffer headers that should be allocated. Two buffer pages are allocated 
for each buffer header for a total of nbuf*2 buffer pages. If the bufpages kernel parameter is set 
and nbuf is 0, then the number of buffer pages is set to bufpages and one buffer header is 
allocated for every two buffer pages for a total of bufpages/2 buffer headers. If both nbuf and 
bufpages are set, then nbuf is used to size the buffer cache. You can also configure a static buffer 
cache by setting the dbc_min_pct and dbc_max_pct tunables to the same value. 

There are trade-offs associated with either a static or dynamic buffer cache. If memory pressure exists, 
a static buffer cache cannot be reduced, potentially causing more important pages to be swapped out 
or processes deactivated. In contrast, some overhead exists in managing the dynamic buffer cache, 
such as the dynamic allocation of the buffers and managing the buffer cache address map or buffer 
cache virtual bitmap (the bufmap and bcvmap tunables are discussed later in more detail). A 
dynamic buffer cache also expands very rapidly, but contracts only when memory pressure exists. 

How the Buffer Cache Works 
The main parts of the buffer cache are the buffer cache hash table, buffer headers, and buffer pages 
themselves. At a minimum, allocate one page for a buffer header, even if the buffer is only 1 KB in 
size. The maximum buffer size is 64 Kb.  Every buffer in the cache is linked through buffer cache hash 
lists. When data from a disk is needed, use the block device (specifically the vnode address of the 
block device) and the block number to calculate a hash index into the buffer cache hash table, which 
is an array of buffer cache hash headers. The buffer cache hash header will point to a linked list of 
buffers whose block device and block number hash to the same hash header. By searching the hash 
chain, we can tell if the requested block exists in the buffer cache.  In HP-UX 11i v1 and later, there is 
one hash lock to cover every eight hash chains.  Prior to HP-UX 11i v1 there was a fixed number of 
128 hash locks. 

If an attempt is made to access a block from a device and it does not exist in the appropriate hash 
chain, a buffer cache miss occurs and one of two actions will occur: 

• A new buffer is allocated (if a dynamic buffer cache is used). Data must be read in from disk. 

• An existing buffer is reused (if a static buffer cache is used or the buffer cache is already at 
the dbc_max_pct) and data must be read in from disk. The buffer reused is either a buffer 
that has been invalidated (for example, a file has been removed or a file system has been 
unmounted), or the buffer has not been accessed recently. 

However, if the desired buffer is found in the buffer cache, then the data can be accessed without 
accessing the disk. 
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The following figure shows the HP-UX buffer cache. 

 

 
 

Note that buffers remain in the buffer cache even after a file is closed. Thus, if a file is reopened a 
short time later, the buffers may still be available in the buffer cache. For example, if your buffer 
cache is 500 MB in size, and you enter a grep command on a 100-MB file, each data block will 
need to be read into the buffer cache as the file is scanned. However, if you enter a subsequent grep 
command on the same file, the file should be accessed via the buffer cache without accessing the disk 
device even though the file was closed after the first grep command. 

Buffer Cache and Memory 
How much memory does the buffer cache take? This seems like a simple question. However, if you 
configure your buffer cache to a dynamic maximum of 10 percent of physical memory on a system 
with 12 GB of memory, then the maximum size of the buffer cache is 1.2 GB of memory. Note that 
this only represents the buffer pages. Other structures used to manage the buffer cache are not 
accounted for in this total.  These other structures include the following: 

• Buffer headers 
• Buffer cache hash table 
• Buffer hash locks 
• Buffer cache address map and buffer cache virtual map 

Buffer Headers  
Each buffer in the buffer cache needs a header structure that defines what the block represents, how it 
can be used, and how it is linked. For a 64-bit system, buffer headers are 600 bytes on HP-UX 11.11 
and 692 bytes on HP-UX 11i v2. If the buffer cache is fixed, nbuf buffer headers are allocated at 
system initialization. If the buffer cache is dynamic, buffer headers are allocated dynamically as 
needed. When more buffer headers are needed a page of memory is allocated and carved up into 
as many buffer headers as will fit in one 4-KB page. 
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Buffer Cache Hash Table 
Blocks in the buffer cache are hashed so that they can be accessed quickly.  The number of hash 
entries is computed at boot time and is one-quarter of the number of free memory pages rounded up 
to the nearest power of two. Therefore, a system with 12 GB of memory will have approximately one 
million hash table entries regardless of the buffer cache configuration. A page is 4,096 bytes, thus  
12 GB represents 3,145,728 pages. One-quarter of that is 786,432 rounded up to the next power of 
two, which is 1,048,576. Each hash header is 40 bytes on HP-UX 11i v1 and 32 bytes on  
HP-UX 11i v2, therefore, a 12-GB system would have 40 MB of memory allocated to the buffer cache 
hash table on HP-UX 11i v1 and 32 MB on HP-UX 11i v2. 

Buffer Cache Hash Locks 
Instead of having a lock for each buffer cache hash header, a single lock is used for multiple hash 
headers. This reduces the amount of memory needed for hash locks. Prior to HP-UX 11i v1 there were 
128 hash locks. Therefore, the number of rows each hash lock covered increased as the size of the 
buffer cache increased.  

The following table specifies how many hash chains each hash lock covers. On HP-UX 11i v1 and 
higher, the number of hash table rows covered by each lock is fixed at 8. 

System Memory 
Size 

Hash Table Size 

 

Hash Entries Per Lock 
(HP-UX 11.0) 

Hash Entries Per Lock 
(HP-UX 11I v1,  
HP-UX 11i v2) 

Total Hash Table 
Memory 

  1 GB     65536        512             8     2.5 MB 

  2 GB   131072       1024             8        5 MB 

  4 GB   262144       2048             8      10 MB 

  8 GB   524288       4096             8      20 MB 

 12 GB  1048576       8192             8      40 MB 

 32 GB  2097152      16384              8      80 MB 

256 GB 16777216    131072              8    640 MB   

 

Buffer Cache Address Map and Buffer Cache Virtual Map 
In HPUX 11.00 and earlier, the buffer cache address map (there are actually two maps: bufmap and 
bufmap2) is a resource map used to keep track of virtual addresses used by the buffer cache. The 
bufmap contains entries for each address range that is free and available for use by the buffer 
cache. The bufmap varies in size based on the memory size. It takes approximately 1 percent of 
memory on a 32-bit system and 2 percent of memory on a 64-bit system. 

The buffer cache virtual map (bcvmap) is a bitmap introduced with HP-UX 11i v1 that represents 
pages in the buffer cache. Since it is a bitmap, its memory requirements are smaller than the bufmap. 
By default, the bitmap is sized (in bits) to the number of physical memory pages multiplied by the 
bcvmap_size_factor kernel tunable (the default is 2). There is some overhead to manage the 
bitmap groups, but overall the memory usage is insignificant. 

The default bcvmap_size_factor value of 2 is fine for many systems, especially those that use a 
dbc_max_pct of 20 or less. However, when a dynamic buffer cache is used, buffers of varying 
sizes can be allocated and deallocated over time. The allocation and deallocation of variable-sized 
buffers can fragment the bcvmap. If there are not any bitmap areas available to represent the size of 
the buffers needed, the system may thrash. This is more common with systems where dbc_max_pct 
is configured at 50 percent or more or where different sized buffers are used. Buffers of different sizes 
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come into play when multiple HFS file systems of different block sizes are used, or multiple JFS file 
systems are mounted with different max_buf_data_size settings, or with NFS file systems mounted 
with a read/write size other than 8 K. In such caches, increase the bcvmap_size_factor 
parameter to at least 16. 

Refer to the vxtunefs(1M) manpage for more information on the max_buf_data_size parameter. 

The bcvmap_size_factor parameter is only available on 64-bit HP-UX 11i v1 systems that have 
the PHKL_27808 patch installed. This parameter is also available with HP-UX 11i v2. 

The following table shows the memory usage of the buffer pages and buffer cache headers for  
HP-UX 11.0 with a buffer header size of 600 bytes: 

System 
Memory Size 

10%  

Buf Pages/Buf Headers 

20% 

 Buf Pages/Buf Headers 

50% 

 Buf Pages/Buf Headers 

1 GB 100 MB/7.3MB 200 MB/15 MB 500 MB/36 MB 

2 GB 200 MB/15MB 400 MB/30 MB 1 GB/75 MB 

4 GB 400 MB/30MB 800 MB/60 MB 2 GB/150 MB 

8 GB 800 MB/60 MB 1.6 GB/120 MB 4 GB/300 MB 

12 GB 1.2 GB/90 MB 2.4 GB/180 MB 6 GB/450 MB 

32 GB 3.2 GB/240 MB 6.4 GB/480 MB 16 GB/1.2 GB 

256 GB 25.6 GB/2 GB 51 GB/4 GB 128 GB/9.4 GB         

 

The following table shows the memory usage of buffer pages and buffer cache headers for  
HP-UX 11i v1 and HP-UX 11i v2 with a buffer header size of 692 bytes: 

System 
Memory Size 

10%  

Buf Pages/Buf Headers 

20% 

 Buf Pages/Buf Headers 

50% 

 Buf Pages/Buf Headers 

1 GB 100 MB/8.4 MB 200 MB/16.9 MB 500 MB/42 MB 

2 GB 200 MB/16.9 MB 400 MB/33.8 MB 1 GB/86.5 MB 

4 GB 400 MB/33.8 MB 800 MB/67.6 MB 2 GB/173 MB 

8 GB 800 MB/67.6 MB 1.6 GB/138.4 MB 4 GB/346 MB 

12 GB 1.2 GB/103.8 MB 2.4 GB/207.6 MB 6 GB/519 MB 

32 GB 3.2 GB/276.8 MB 6.4 GB/553.6 MB 16 GB/1.35 GB 

256 GB 25.6 GB/2.2 GB 51 GB/4.3 GB 128 GB/10.8 GB         

 

Advantages of Using the Buffer Cache 
There are several advantages to using buffer cache, including: 

• Small sequential I/O 
Applications read data from the file system in various size requests, which may not line up to 
the actual file system block size. Without the buffer cache, each request would have to go to 
the physical disk for the entire file system block, even though only a few bytes might be 
needed. If the next read is from the same physical disk block, it would have to be read in 
again since it was not saved. However, with the buffer cache, the first read causes a physical 
I/O to the disk, but subsequent reads in the same block are satisfied out of the buffer cache. 
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• Read ahead 
If file system access is generally sequential, the buffer cache provides enhanced performance 
via read ahead. When the file system detects sequential access to a file, it begins doing 
asynchronous reads on subsequent blocks so that the data is already available in the buffer 
cache when the application requests it. 
 
For HFS file systems, general sequential reads are configured via the hfs_ra_per_disk 
 
system tunable. If you are using LVM striping, multiply the hfs_ra_per_disk value by the 
number of stripes. 
 
For JFS 3.1, the initial read ahead starts out small and, as the sequential access continues, 
JFS reads ahead more aggressively. 
 
For JFS 3.3 and later, the read-ahead range is the product of the read_pref_io and 
read_nstream parameters. When sequential access is first detected, four ranges are read 
into the buffer cache (4 * read_pref_io * read_nstream). When an application 
finishes reading in a range, a subsequent range is prefetched. The read-ahead size can 
greatly benefit sequential file access. However, applications that generally do random I/O 
may inadvertently trigger the large read ahead by occasionally reading sequential blocks. 
This read-ahead data will likely be unused due to the overall random nature of the reads. 
 
For JFS 3.3 and later, you can control the size of the read-ahead data with the vxtunefs 
read_nstream and read_pref_io parameters; for JFS 3.5/4.1, you can turn the read 
ahead size off by setting the vxtunefs parameter read_ahead to 0. For JFS 3.1, you 
cannot tune the read-ahead size. 

• Hot blocks 
If a file system block is repeatedly accessed by the application (either a single process or 
multiple processes), then the block will stay in the buffer cache and can be used without 
having to go to the disk each time the data is needed. The buffer cache is particularly helpful 
when the application repeatedly searches a large directory, perhaps to create a temporary 
file. The directory blocks will likely be in buffer cache if they are frequently used and physical 
disk access will not be required. 

• Delayed writes 
The buffer cache lets applications perform delayed or asynchronous writes. An application 
can write the data to the buffer cache and the system call will return without waiting for the 
I/O to complete. The buffer will be flushed to disk later using commands such as syncer, 
sync, or fsync. Performing delayed writes is sometimes referred to as write behind. 

Disadvantages of Using the Buffer Cache 
While it may seem that every application would benefit from using the buffer cache, using the buffer 
cache does have some costs, including: 

• Memory 
Depending on how it is configured, the buffer cache may be the largest single user of 
memory. By default, a system with 8 GB of memory may use as much as 4 GB for buffer 
cache pages alone (with dbc_max_pct set to 50).  Even with a dynamic buffer cache, a 
large buffer cache can contribute to overall memory pressure. Remember that the buffer 
cache will not return the buffer pages unless there is memory pressure. Once memory 
pressure is present, buffer pages are aged and stolen by vhand. Under memory pressure, 
buffer cache pages are stolen at a rate three times that of user pages. 
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• Flushing the buffer cache: the syncer program 
The syncer program is the process that flushes delayed write buffers to the physical disk. 
Naturally, the larger the buffer cache, the more work that must be done by the syncer 
program. The HP-UX 11.0 syncer is single threaded. It wakes up periodically and 
sequentially scans the hash table for blocks that need to be written to the physical device. The 
default syncer interval is 30 seconds, which means that every 30 seconds the entire buffer 
cache hash table is scanned for delayed write blocks. The syncer program runs five times 
during the syncer interval, scanning one-fifth of the buffer cache each time. 
 
HP-UX 11i v1 and HP-UX 11i v2 are more efficient at this in that the syncer program is 
multithreaded with one thread per CPU. Each CPU has its own dirty list and each syncer 
thread is responsible for flushing buffers from its own dirty list. This improves buffer cache 
scaling in that only dirty buffers are scanned and each thread has its own list preventing 
contention around a single list. 

• Other sync operations 
Various system operations require that dirty blocks in the buffer cache be written to disk 
before the operation completes. Examples of such operations are the last close on a file, or 
an unmount of a file system, or a sync system call. These operations are independent of the 
syncer program and must traverse the entire buffer cache looking for blocks that need to be 
written to the device. Once the operation completes, it must traverse the buffer cache hash 
table again, invalidating the buffers that were flushed. These traversals of the buffer cache 
hash chains can take time, particularly if there is contention around the hash lock. 

• IO throttling 
Besides just walking the hash chains and locking/unlocking the hash locks, the larger the 
buffer cache, the larger the number of dirty buffers that are likely to be in the cache needing 
to be flushed to the disk. This can cause large amounts of write I/O to be queued to the disk 
during sync operations. A read request could get delayed behind the writes and cause an 
application delay. Flushes of the buffer cache can be throttled, limiting the number of buffers 
that can be enqueued to a disk at one time. By default, throttling is turned off. For JFS 3.1, 
you can enable throttling if the PHKL_27070 patch is installed by setting vx_nothrottle to 
0. This alleviates read starvation at the cost of sync operations such as unmounting a file 
system. For JFS 3.3 and later, you can control the amount of data flushed to a disk during 
sync operations via the vxtunefs max_diskq parameter. 

• Write throttling 
Setting max_diskq to throttle the flushing of dirty buffers has a disadvantage. Processes that 
perform sync operations, such as umount or bdf, can stall since the writes are throttled. 
Setting max_diskq does not prevent applications from continuing to perform asynchronous 
writes. If writes to large files are being done, it is possible to exhaust all the buffers with dirty 
buffers, which can delay reads or writes from other critical applications. 
 
With JFS 3.5, a new tunable was introduced: write_throttle. This controls the number of 
dirty buffers a single file can have outstanding. If an application attempts to write faster than 
the data can be written to disk and the write_throttle amount has been reached, the 
application will wait until some of the data is written to disk and the amount of data in the 
dirty buffers falls back below the write_throttle amount. 

• Large I/O 
The maximum size of a buffer page is 64 KB. For I/O requests larger than 64 KB, the request 
must be broken down into multiple 64-KB I/O requests. Therefore, reading 256 KB from disk 
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may require four I/O requests. However, if the buffer cache is bypassed, a single 256 KB 
direct I/O could potentially be performed. 

• Data accessed once 
Management of the buffer cache requires additional code and processing. For data that is 
accessed only once, the buffer cache does not provide any benefit for keeping the data in the 
cache. In fact, by caching data that is accessed only once, the system may need to remove 
buffer pages that are more frequently accessed. 

• System crash 
Since many writes are delayed, the system may have many dirty buffers in the buffer cache 
that need to be posted to disk when the system crashes. Data in the buffer cache that is not 
flushed before the system comes down is lost. 

Bypassing the Buffer Cache 
There are several ways that I/O can avoid using the buffer cache altogether. Bypassing the buffer 
cache is known as direct I/O. 

For the following JFS features, the HP Online JFS license is needed to perform direct I/O: 

• mincache=direct, convosync=direct 
 
For JFS file systems, if the file system is mounted with the mincache=direct option, the 
convosync=direct option, or both, then reads and writes bypass the buffer cache and go 
directly to the user-supplied buffer. If a file system is mounted with these options, all I/O to the 
file system bypasses the buffer cache. Read ahead and write behind are not available since 
there is no intermediate holding area. Refer to the mount_vxfs(1M) manpage for more 
information. 

• ioctl (fd,VX_SETCACHE, VX_DIRECT) 
 
For JFS file systems, this ioctl call will set the access for the file referenced by fd as direct 
and will bypass the buffer cache. This call applies only to the instance of the file represented 
by fd. Other applications opening the same file are not affected.  Refer to the vxfsio(7) 
manpage for more information. 

• Discovered direct I/O 
 
JFS provides a feature called discovered direct IO, where I/O requests larger than a certain 
size are done using direct I/O. Large I/O requests are typically performed by applications 
that read data once, such as backup or copy operations. Since the data is accessed once, 
there is no benefit to caching the data. Caching the data may even be detrimental as more 
useful buffers may get flushed out to make room for this once-accessed data. Therefore, large 
I/O requests on JFS file systems are performed directly and bypass the buffer cache. For JFS 
3.1, the discovered direct I/O size is fixed at 128 Kb. For JFS 3.3 and later, the default 
discovered direct I/O size is 256 Kb, but can set with vxtunefs command by setting the 
discovered_direct_iosz tunable. 

• Raw I/O  
 
If access to the data is through the raw device file, then the buffer cache is not used. 

• Async I/O  
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Some databases use the async driver (/dev/async), which performs asynchronous I/O, 
but bypasses the buffer cache and reads directly into shared memory segments. 

Be careful not to mix buffered I/O and direct I/O. This results in increased overhead to keep the 
direct and buffered data in sync. 

Buffer Cache Guidelines 
Providing general guidelines for tuning the buffer cache is very difficult. So much depends on the 
application mix that is running on the system, but some generalizations can be made. 

If you are using a database, the database buffering will likely be more efficient than the system 
buffering. The database is more likely to understand the I/O patterns and keep any relevant buffers in 
memory. Given a choice, memory should be assigned to the database global area rather than the 
system buffer cache. 

HP-UX 11 v1 is more efficient at handling large buffer caches than HP-UX 11.0. The term “large” is 
relative, but for this discussion consider a buffer cache larger than 1 GB or greater than 50 percent of 
memory to be large. In general, the buffer cache on 11.0 should be configured to 1 GB or less due to 
scaling issues with large caches, but you can increase this size on HP-UX 11i v1 and HP-UX 11i v2. 
However, if you are using a large buffer cache on HP-UX 11i v1 you should have PHKL_27808 or 
any superseding patch installed to increase the buffer cache virtual map size. 

The larger the buffer cache, the longer sync operations will take. This particularly affects file system 
mount and unmount times. If file systems need to be mounted or unmounted quickly (for example 
during an Serviceguard package switch), then a smaller buffer cache is better. 

If the buffer cache is configured too small, the system could be constantly searching for available 
buffers. The buffer cache should probably be configured to a minimum of 200 MB on most systems. 

Applications that benefit most from large caches are often file servers, such as NFS or Web servers, 
where large amounts of data are frequently accessed. Some database applications that do not 
manage their own file access may also fall into this category. Please check with your application 
vendor for any vendor-specific recommendations.  
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The JFS Inode Cache 
HP-UX has long maintained a static cache in physical memory for storing High Performance File 
System (HFS) file information (inodes). The VERITAS File System (HP OnlineJFS/JFS) manages its own 
cache of file system inodes which will be referred to here as the JFS inode cache. The JFS inode 
cache is managed much differently than the HFS inode cache. Understanding how the JFS inode 
cache is managed is key to understanding how to best tune the JFS inode cache for your unique 
environment. Improper tuning of the JFS inode cache can affect memory usage or inode lookup 
performance. 

This section will address the following questions regarding the JFS inode cache: 

• What is an inode cache? 
• What is the maximum size of the inode cache? 
• How can I determine the number of inodes in the cache? 
• How can I determine the number of inodes in use? 
• How does JFS manage the inode cache? 
• How much memory is required for the JFS inode cache? 
• Are there any guidelines for configuring the JFS inode cache? 

What is an Inode Cache? 
An inode cache is a holding location for inodes from disk. Each inode in memory is a superset of 
data, which contains the inode from disk. The disk inode stores information for each file such as the 
file type, permissions, timestamps, size of file, number of blocks, and extent map. The in-memory 
inode stores the on-disk inode information along with overhead used to manage the inode in memory. 
This information includes pointers to other structures, pointers used to maintain linked lists, the inode 
number, lock primitives, and so forth. 

Once the inode is brought into memory, subsequent access to the inode can be done through memory 
without having to read or write it to disk. 

 

 
 
One inode cache entry must exist for every file that is opened on the system. If the inode table fills up 
with active inodes, the following error will be seen on the console and in the syslog file and the 
open() system call will fail: 

vx_iget - inode table overflow 

Once the last close is done on a file, the inode will be put on a free list but it is not necessarily 
removed from the cache. The inode cache will likely contain some files that are closed, so if the file is 
reopened a disk access will not occur as the inode is already in memory. 
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The JFS Inode Cache is a Dynamic Cache 
Unlike the High Performance File System (HFS), the JFS inode cache is a dynamic cache. A dynamic 
cache is a cache that grows and shrinks based on need. As files are opened, the number of inodes in 
the JFS inode cache grows. As files are closed, they are moved to a free list and can be reused at a 
later time. However, if the inode is inactive for a certain period of time, the inode is freed and space 
is return to the kernel memory allocator. Over time, the numbers of inodes in the inode cache will 
grow and shrink. 

Maximum Inodes in the JFS Inode Cache 
While the JFS inode cache is dynamically sized, there is still an absolute maximum number of inodes 
that can be maintained in the inode cache. The following table shows the default maximum number of 
inodes in the JFS inode cache1: 

Physical Memory Default Maximum Inodes 

for JFS 3.3 and above 

256 Mb 16,000 

512 Mb 32,000 

1 GB 64,000 

2 GB 128,000 

8 GB 256,000 

32 GB 512,000 

128 GB 1,024,000 

 
Specific values exist for memory sizes less than 256 Mb, but the sizes are not mentioned here since 
most HP-UX systems should be using 256 Mb of memory or more.   For systems equipped with 
memory cells that can be configured as removable, memory in the above table refers to kernel 
available memory and does not include removable memory. 

If the size of memory falls in between the memory sizes listed in the previous table, a value 
proportional to the two surrounding values is used. For example, a system using JFS 3.3 with 5 GB of 
memory would have a default maximum number of inodes in the inode cache of 192,000. 

Note the default maximum number of inodes seems very high. Remember that it is a maximum, and 
the JFS inode cache is dynamic, as it can shrink and grow as inodes are opened and closed. The 
maximum size must be large enough to handle the maximum number of concurrently opened files at 
any given time, or the “vx_iget - inode table overflow” error will occur. 

For JFS 3.3, you can identify the maximum number of JFS inodes that can be in the JFS inode cache 
using the following adb command: 

# echo “vxfs_ninode/D” | adb –k /stand/vmunix /dev/mem 

 

 

 

 

                                                 
1. JFS 3.3 is supported on 11i v1; JFS 3.5 is supported on HP-UX 11i v1 and 11i v2; and JFS 4.1 is supported 
on HP-UX 11i v2, HP-UX 11i v3; and JFS 5.0 is supported on HP-UX 11i v2, HP-UX 11i v3 (planned). 
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If you are using JFS 3.5 and above, you can use the vxfsstat command to display the maximum 
number of inodes in the inode cache as follows: 

# vxfsstat / | grep inodes 
     3087 inodes current     128002 peak               128000 maximum         
   255019 inodes alloced     251932 freed          
 
# vxfsstat -v /  | grep maxino 
vxi_icache_maxino            128000    vxi_icache_peakino         128002 
 

Note that in the previous example the inode cache can handle a maximum of 128,000 inodes. 

Determining the Current Number of Inodes in the JFS Inode Cache 
Determining how many inodes are currently in the inode cache is difficult on JFS versions prior to JFS 
3.5 as existing user tools do not give this information. You can use the following adb command to 
display the current number of inodes in the JFS inode cache if using JFS 3.3: 

# echo “vx_cur_inodes/D” | adb –k /stand/vmunix /dev/mem 

Using JFS 3.5 and above, you can use the vxfsstat command to display the current number of 
inodes in the inode cache as follows: 

# vxfsstat / | grep inodes 
     3087 inodes current     128002 peak               128000 maximum         
   255019 inodes alloced     251932 freed          
 
# vxfsstat -v /      
vxi_icache_curino              3087    vxi_icache_inuseino           635 
 

| grep curino   

Note from the previous output that the current number of inodes in the cache is 3087. 

Determining the Number of Active JFS Inodes in Use 
While a number of the JFS inodes exist in the cache, remember that not all of the inodes are actually 
in use as inactive inodes exist in the cache.  
 
For JFS 3.3, there is no easy method to determine the actual inodes in use.  For JFS 3.5 and above, 
we can again use vxfsstat to determine the actual number of JFS inodes that are in use: 

# vxfsstat -v / | grep inuse 
vxi_icache_curino            128001    vxi_icache_inuseino         635 

The inode cache is filled with 128,001 inodes but only 635 are in use. The remaining inodes are 
inactive, and if they remain inactive one of the vxfsd daemon threads will start freeing the inodes 
after a certain period of time. 

Note that the current number of inodes (128,001) is greater than the maximum number of inodes 
(128,000). This behavior is normal as there are few exceptions that allow allocating a few additional 
inodes in the cache. 

The Inode Free Lists 
When a file is not accessed or closed, it is placed on one of many free lists.   The free lists store 
inodes that can be readily reused.   To avoid lock contention when maintaining the free lists, there are 
actually many free list headers.   The diagram below illustrates this concept: 
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JFS uses a number of factors to determine the number of free lists on the system, such number of 
inodes, maximum number of processors supported, etc.  The number of free lists is not tunable and 
can vary from one JFS version to the next.  The number of free lists can be identified with the 
following adb command: 

# echo “vx_nfreelists/D” | adb –k /stand/vmunix /dev/mem    # 11.11 

# echo “vx_nfreelists/D” | adb –o /stand/vmunix /dev/kmem    # 11.23  

More discussion on how the free lists affect memory utilization will follow.   

Growing the JFS Inode Cache 
When a file is opened or accessed and it does not already exist in the cache, its inode must be 
brought in from disk into the JFS inode cache. JFS must make a decision as to whether to use one of 
the existing inodes on a free list, or to allocate a new inode if you have not allocated the maximum 
number of inodes.   For JFS 3.3 and later, an inode must be on a free list for three minutes before it is 
reused. If the inodes on the free list have been there for less than two or three minutes, then JFS will 
allocate more inodes from the kernel memory allocator as necessary. 

Consider an application that does a stat system call on many files in a very short timeframe. 
Example applications or processes are the find, ls, ll, or backup commands. These commands 
traverse through the file systems at a very rapid pace. If you have enough files on your system, you 
can easily fill up the JFS inode cache in a very short time. However, the files are usually not kept 
open. Therefore, if the JFS inode cache fills up, an inode is claimed off the free list even though it has 
not been on the free list for the appropriate amount of time. 

 

 
 
Note that maintaining all these inodes may or may not be helpful. For example, if the inode cache 
can hold 128,000 inodes, and the find(1) command traverses 129,000 inodes, then only the last 
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128,000 inodes would be in the cache. The first 1000 inodes would have been reused when readi
in the last 1000 inodes. If you use the find command again, it would have to recache all 129,00
inodes. 

However, if the  command only traversed through 127,000 inodes, then all of the inodes would
be in the

ng 
0 

find  
 cache for the second find command, which would then run much faster. 

sstat

     3087 inodes current     128002 peak               128000 maximum        
    255019 inodes alloced     251932 freed    
 

W

vxfsstat / p inodes 
    128002 peak               128000 maximum         

 251935 freed    

A
128,001. 

as booted. Again, it is normal for the “current” and “peak” counts to be greater than the 

che 
) threads runs to scan the free lists to see if any inodes 
, the daemon thread begins to free the inodes back to the 

ernel allocator and 
the rate at which the inodes are freed varies depending on the JFS version as shown in the following 

 JFS 3.3 JFS 3.5/JFS 4.1/JFS 
5.1 

As an example, consider an HP-UX 11i v1 system using JFS 3.5. Prior to a find command, the 
vxf  command shows the current number of inodes to be 3087: 
 

# vxfsstat / | grep inodes 

      
 it traverses enough files: hen you enter the find command, the inode cache will fill up if

 
# find / -name testfile 

| gre# 
   128001 inodes current 
   379936 inodes alloced    
 

s currently in the cache jumped to fter entering the find command, note that the number of inode

The “peak” value of 128,002 represents the highest value that the “inodes current” has been since 
the system w
“maximum” value by a few inodes. 

Shrinking the JFS Inode Ca
Periodically, one of the JFS daemon (vxfsd
have been inactive for a period of time. If so
kernel memory allocator so the memory can be used in future kernel allocations. 

The length of time an inode can stay on the free list before it is freed back to the k

table: 

Minimum time on free list 
before being freed 
(seconds) 

500 1800 

Maximum inodes to 
per second

free 
 

50 10 - 25 

 
For example, JFS 3.3 will take approximately 2000 seconds or 33 minutes to free up 100,000 

odes. 

te to free using the vxfsstat command: 

 
Th ree_timelag, which you can also display with vxfsstat on 

S 3.5: 

in

With JFS 3.5 and above, you can see the minimum time on the free list before the inode is a 
candida

# vxfsstat -i / | grep "sec free" 
     1800 sec free age 

is value is also considered the if
JF
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# vxfsstat -v / | grep ifree 
vxi_ic          1035        18ache_recycleage    vxi_ifree_timelag    00 

 
C

sstat -v / | grep -i curino 
16:34:43 MDT 2003 

vxi_icache_curino            127526    vxi_icache_inuseino          635 
 
Th

vxi_icache_curino            127101    vxi_icache_inuseino         635 
 
Not

fter being idle all evening, the next day, the number of inodes in the inode cache were reduced 

vxi_icache_curino              3011    vxi_icache_inuseino            636 

The size of the individual inodes varies depending on the release. Prior to JFS 3.3, the vnode (virtual 
d above, the 

 

onsider the JFS 3.5 case again. The system begins to free the inodes if they have been inactive for 
0 minutes (1800 seconds) or more. About 30 minutes after entering the find command, the inodes 3

start to free up: 
 
# date; vxf
Thu May  8 

e vxfsstat command is executed again 134 seconds later: 
 

# date; vxfsstat -v / | grep -i curino 
Thu May  8 16:36:57 MDT 2003 

e that 425 inodes were freed in 134 seconds, about 3 inodes per second. 

A
down again as all the inactive files were freed: 

# date; vxfsstat -v / | grep -i curino                
Fri May  9 14:45:31 MDT 2003 

Determining the Memory Cost Associated with each JFS Inode 

file system node) and inode were allocated together as a single resource. On JFS 3.3 an
vnode is allocated separately from the inode. On a 32-bit operating system, the inode is smaller as 
the pointer fields are only four bytes. On a 64-bit operating system, the pointer fields are eight bytes.  

The kernel memory allocator also impacts the amount of space used when allocating the inodes and 
associated data structures. You can only allocate memory using certain sizes. For example, if the 
kernel tries to allocate an 80-byte structure, the allocator may round the size up to 128 bytes, so that 
all allocations in the same memory page are of the same size. 

For each inode, you also need to account for locking structures that are also allocated separately from
the inode. 
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You can use the following table to estimate the memory cost of each JFS inode in the inode cache 
(measured in bytes). Each item reflects the size as allocated by the kernel memory allocator: 

 
Structures JFS 3.3 

11.11 
32-bit 

JFS 3.3 
11.11 
64-bit 

JFS 3.5 
11.11 
64-bit 

JFS 3.5 
11.23  

JFS 4.1 
11.23 

JFS 5.1 
11.23 

JFS 4.1 
11.31 

inode 1024 1364 1364 1364 1490 1490 1490 

vnode 128 184 184 248 248 248 376 

locks 272 384 352 96 96 120 240 

Total 1352 1902 1850 1708 1834 1858 2106 

 
Note that the previous table lists a minimal set of memory requirements. There are also other 
supporting structures, such as hash headers and free list headers. Other features may use more 
memory. For example, using Fancy Readahead on JFS 3.3 on a file will consume approximately 
1024 additional bytes per inode. Access control lists (ACLs) and quotas can also take up additional 
space, as well as Cluster File System information. 

For example, consider an HP-UX 11i v3 system using JFS 4.1 that has 2 GB of memory. If you enter 
an ll or find command on a file system with a large number of files (greater than 128,000), then 
the inode cache is likely to fill up. Based on the default JFS inode cache size of 128000, the minimum 
memory cost would be approximately 256 MB or 12 percent of total memory. 

However, if you then add more memory so the system has 8 GB of memory instead of 2 GB, then the 
memory cost for the JFS inode will increase to approximately 512 MB. While the total memory cost 
increases, the percentage of overall memory used for the JFS inode cache drops to 6.25 percent. 

Effects of the Kernel Memory Allocator 
The internals of the kernel memory allocator have changed over time, but the concept remains the 
same. When the kernel requests dynamic memory, it allocates an entire page (4096 bytes) and then 
subdivides the memory into equal sized chunks known as “objects”. The kernel does allocate pages 
using different sized objects. The allocator then maintains free lists based on the object size. 

 

 
 
In the previous example, the memory pages are divided into four objects. In some implementations, 
there is some page overhead and object overhead associated with the object. For this example, 
assume that the size of each object is 1024 bytes. Each page may have both used and freed objects 
associated with it. All of the free pages are linked to a linked list pointed to by an object free list 
head. There is typically one object free list head associated with each CPU on the system for each 
object size. Therefore, CPU 0 can have a object free list for the 32-byte objects, the 64-byte objects, 
and so on. CPU 1 would also have corresponding object free lists. 
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There are multiple object sizes available but not all sizes are represented. For example, on  
HP-UX 11.0 there are pages that use the 1024-byte object and the 2048-byte object, but nothing in 
between. If JFS requests 1040 bytes of memory, then an entire 2048-byte object is taken from a page 
divided into two 2048-byte objects. 

As inodes are allocated, the kernel will allocate memory pages and divide them into objects, which 
are then used by the JFS subsystem for inodes and associated data structures. To allocate 128,000 
inodes that each take 1024 bytes, the system needs to allocate 32,000 pages (4 inodes per page).  

As discussed earlier, the JFS inode cache is dynamic. Inodes that are not accessed are eventually 
freed. These freed inodes go back to the object freelist. If you enter an ll(1) or find(1) command to 
access 128,000 inodes, and the inodes are unreferenced for some time, then large object freelist 
chains can form as the JFS daemon thread starts to free the inodes. This can occur for each CPU 
object freelist since inodes are freed to the CPU’s object chain where they were allocated. 

 

 
 
Note in the previous figure that if CPU 3 needed a new inode, then the kernel memory allocator 
would return the first object from the object freelist chain. However, the object freelist chain for CPU 1 
is empty. If you enter an ll or find command, new inodes will be needed in the JFS inode cache. 
New memory pages will be allocated and divided up into objects and placed in the object freelist for 
CPU 1. The kernel memory allocator will not steal free objects from another CPU’s free object chain. 
By not stealing objects, the system realizes a performance gain by reducing contention on the object 
chain locks. However, when an inode is freed, the kernel memory allocator will place the freed area 
on the free object chain for CPU 1 to be used for a subsequent allocation. The freeing of the inodes 
creates potentially large free object chains for each CPU as the JFS inode cache shrinks. 

While the object freelists can be used for other 1024-byte allocations, they cannot be used for other 
sized allocations as all the objects allocated from a page must be the same size. If you have four 
CPUs, then you can potentially consume memory for freed inodes on the object freelist as well as used 
inodes in the JFS inode cache. 

The HP-UX kernel performs “object coalescing”, such that if all the objects in a given page are freed, 
then the memory page can be returned to the free pool and allocated for use in other areas (process 
memory, different size memory objects, and others). However, this “object coalescing” only occurs if 
there is memory pressure present and there is some overhead in performing the coalescing. 
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Inode Allocation with JFS 4.1 and later 
Beginning with JFS 4.1, the inode algorithms change to allocate inodes more efficiently.  Rather than 
allocating one 4 Kb page which is used to allocate JFS inodes, a larger “chunk” of memory was 
used.  The inode allocation chunk size is 16Kb.  Currently, JFS can carve out 11 inodes out of a 16 
Kb chunk.    
 

Inode Chunk JFS Inode 
Free List 

Inode 1 
 

Inode 2 

Inode 3 
 

Inode 4 

Inode 5 
 

Inode 6 
16 Kb 

Inode 7 
 

Inode 8 

Inode 9 

Inode 10 

Inode 11 

unused 

 
So on JFS 4.1 or later, when a new inode is needed and the JFS inode cache can be expanded; JFS 
will allocate a chunk of inodes, return one inode to the requestor and place the remaining 10 inodes 
on one of the inode free lists.  Thus the burden of the inode coalescing is now on JFS instead of the 
kernel memory allocator.  In order to free a chuck back to the kernel memory allocator, every inode in 
the chunk must be free. 
 
Allocating inodes in chunk does have a disadvantage.  Note that all inodes in a chunk that are free 
must be on the same free list.   In order for JFS to free inodes back to the kernel memory allocator, 
every inode in the chunk must be free.  Also, when trying to find an inode on the free list to re-use, JFS 
will look at a given free list first, and if there are no inodes on the free list, it must steal inodes from 
another free list.  However, unlike earlier version of JFS, since JFS 4.1 allocates inodes in chunks, an 
entire chunk of free inodes must be available on another free list in order to steal inodes from another 
free list.  Thus with JFS 4.1, it is less likely that inodes will be moved from one free list to another.  
Thus we need a sufficient number of inodes on each list.   Tuning the maximum number of inodes on 
each free list will be discussed in the next 2 sections. 
 

Tuning the Maximum Size of the JFS Inode Cache on JFS 3.5 or earlier 
Every customer environment is unique. The advantage to a large inode cache is that you do not have 
to access the disk every time the inode is needed. If you are doing continuous random lookups on a 
directory with 64,000 files in it (such as opening a file or using a stat system call), then having a 
large cache is helpful. However, if you are only using a find or ll command occasionally on a set 
of 512,000 inodes, then having 128,000 inodes in the cache will not help. You need to understand 
how your files are accessed to know whether or not a large inode cache will be helpful. The memory 
cost associated with each inode should be taken into account as well. 
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You can tune the maximum size of the JFS inode cache using the vx_ninode tunable. With JFS 4.1 
on HP-UX 11i v2, vx_ninode can be tuned dynamically using kctune. 

At a minimum, you must have at least one JFS inode cache entry for each file that is opened at any 
given time on your system. If you are concerned about the amount of memory that JFS can potentially 
take, then try to tune vx_ninode down so that the cache only takes about1-2 percent of overall 
memory. Most systems will work fine with vx_ninode tuned to20,000-50,000. However, you need 
to consider how many processes are running on the system and how many files each process will 
have open on average. Systems used as file servers and Web servers may have performance benefits 
from using a large JFS inode cache and the defaults are sufficient. 

Note that tuning ninode does not affect the JFS inode cache as the JFS inode cache is maintained 
separately from the HFS inode cache. If your only HFS file system is /stand, then ninode can 
usually be tuned to a low value (for example, 400). 

Tuning the Maximum Size of the JFS Inode Cache on JFS 4.1 or later 
The introduction of allocating inodes in chunks has added a new dynamic to the tuning of vx_ninode.  
On previous JFS versions, it was safe to tune the vx_ninode down to a smaller value, such as 20,000 
on some systems.  Now the number of free lists becomes a major factor, especially on large memory 
systems (>8GB of physical memory) which have a large number of free lists.   For example, if you 
have 1000 free lists and vx_ninode is tuned to 20,000, then there are only 20 inodes allocated per 
free list.  Note that 20 is an average.  Some free lists will have 11 and some free lists will have 22 as 
the inodes are allocated in chunks of 11.   Since JFS inodes are less likely moved from one free list to 
another, the possibility of prematurely running out of inodes is greater when too few inodes are 
spread over a large number of free lists.  As a general rule of thumb, you would like to have 250 
inodes per free list.  However, if memory pressure is an issue, then vx_ninode can be tuned down to 
100 inodes per free list.   This will greatly limit the ability to reduce vx_ninode.   So before tuning 
down vx_ninode to a smaller value, be sure to check the number of free lists on the system using the 
following adb command for JFS 4.1 (available on 11.23 and 11.31). 
 
# echo “vx_nfreelists/D” | adb –o /stand/vmunix /dev/kmem  

  

Tuning Your System to Use a Static JFS Inode Cache 
By default, the JFS inode cache is dynamic in size. It grows and shrinks as needed. However, since 
the inodes are freed to the kernel memory allocator’s free object chain, the memory may not be 
available for use for other reasons (except for other same-sized memory allocations). The freed inodes 
on the object freelists are still considered “used” system memory. Also, the massive kernel memory 
allocations and subsequent frees add additional overhead to the kernel. 

The dynamic nature of the JFS inode cache does not provide much benefit. This may change in the 
future as the kernel memory allocator continues to evolve. However, using a statically sized JFS inode 
cache has the advantage of keeping inodes in the cache longer and reducing overhead of continued 
kernel memory allocations and frees. Instead, the unused inodes are retained on the JFS inode cache 
freelist chains. If you need to bring a new JFS inode in from disk, use the oldest inactive inode. Using 
a static JFS inode cache also avoids the long kernel memory object free chains for each CPU. Another 
benefit to a static JFS inode cache is that the vxfsd daemon will not use as much CPU. On large-
memory systems, vxfsd can use a considerable amount of CPU, reducing the size of the JFS inode 
cache. 

Beginning with HP-UX 11i v2 (with JFS 3.5 and above) a new system-wide tunable 
vxfs_ifree_timelag was introduced to vary the length of time an inode stayed in the cache 
before it is considered for removal. Setting vxfs_ifree_timelag to -1 effectively makes the JFS 
inode cache a static cache. Setting vxfs_ifree_timelag is especially useful on large memory 
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systems so the vxfsd daemon does not use too much CPU. The following example uses kctune to 
change vxfs_ifree_timelag without a reboot: 

 
# kctune vxfs_ifree_timelag=-1 
             :                              : 
Tunable                       Value  Expression  Changes 
vxfs_ifree_timelag  (before)      0  Default     Immed 
                    (now)        -1  -1           

Summary 
Deciding whether or not to tune the JFS inode cache depends on how you plan to use your system. 
Memory is a finite resource, and a system manager needs to decide how much of the system’s 
memory needs to be spent on a specific resource. 

By default, the JFS inode cache is configured to be very large. You should understand the advantages 
and disadvantages of using the default JFS inode cache sizes and behavior. Consider the type of 
access to the files on the system and the memory cost associated with the JFS inode cache when 
deciding whether or not to tune the JFS inode cache. 

For most customers, tuning the JFS inode cache down would save memory and potentially enhance 
performance by leaving more memory for other operations. With the introduction of vxfsstat(1M) on 
JFS 3.5, you can determine how many inodes are actually in use at a given time to judge how large 
your inode cache should be. Most systems do not need more than 20,000 inodes, so reducing the 
size of the JFS inode cache can reduce system memory utilization.  However, be careful of reducing 
the size of the cache on JFS 4.1 or later by checking the number of inode free lists. 

Since the JFS inode cache often expands to the maximum amount, using a fixed-sized inode cache 
will help the kernel memory allocator from managing large per-CPU freelists. Therefore, tuning 
vx_noifree or vxfs_ifree_timelag can also reduce overall system memory utilization as well 
as reducing the amount of CPU utilization used by the vxfsd daemon. 

However, if the primary use is for the system is as a fileserver, where random file lookups are being 
performed constantly or sequential lookups are done and the working set is less than the size of the 
inode cache, then using the default JFS inode cache sizes is probably best. Application performance 
could be degraded if the application relies on having a larger working set of inodes in the cache. 
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The JFS Metadata Buffer Cache 
In past releases of the VERITAS File System (HP OnlineJFS/JFS) prior to Journaled File System (JFS) 
3.5, the metadata of a file system was cached in the standard HP-UX buffer cache with all of the user 
file data. Beginning with JFS 3.5 introduced on HP-UX 11i v1, the JFS metadata was moved to a 
special buffer cache known as the JFS metadata buffer cache (or metadata cache). This cache is 
managed separately from the HP-UX buffer cache. This metadata cache serves the same purpose as 
the HP-UX buffer cache, but enhancements were made to increase performance due to the unique 
ways the metadata is accessed. 

This section will address the following questions regarding the metadata cache: 

• What is metadata? 
• Is the metadata cache static or dynamic? 
• How much memory is required for the metadata cache? 
• How can the metadata cache be tuned? 
• Are there any guidelines for configuring the metadata cache? 

What is Metadata? 
Metadata is structural information from disk such as inodes, indirect block maps, bitmaps, and 
summaries. 

If you consider an actual file on disk, it is made up of the inode and data blocks, and potentially 
indirect blocks. The inode contains an extent map to either the data blocks or other extent maps 
known as indirect blocks. 

When inodes are first read in from disk, the file system reads in an entire block of inodes from disk 
into the metadata cache (similar to reading a data file). Then, the inodes that are actually being 
accessed will be brought into the JFS inode cache. Note the difference between inodes in the 
metadata cache, which contains only the disk copy, and the inode in the JFS inode cache, which 
contains the linked lists for hashing and free lists, the vnode, locking structures, and the on-disk copy 
of the inode. 
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The Metadata Cache: Dynamic or Static? 
The metadata cache is a dynamic buffer cache, which means it can expand and shrink over time. It 
normally expands during periods of heavy metadata activity, especially with operations that traverse 
a large number of inodes, such as a find or backup command. Simply reading a large file may fill 
up the HP-UX buffer cache, but not the metadata cache. 

Unlike the HP-UX buffer cache, which contracts only when memory pressure is present, the metadata 
cache contracts after the metadata buffers have been inactive for a period of time (about one hour). 
While the metadata cache contracts, it contracts at a slow rate, so it takes some time for inactive 
buffers to be reclaimed by the memory subsystem. 

You can view the current size of the buffer cache and the maximum size of the buffer cache by using 
the vxfsstat command. For example: 

# vxfsstat -b /                    
 
12:55:26.640  Thu Jan 3 2006 -- absolute sample 
 
buffer cache statistics 
   348416 Kbyte current      356040 maximum         
   122861 lookups            98.78% hit rate        
     2428 sec recycle age [not limited by maximum] 
 

Note that the maximum amount only accounts for the buffer pages, and does not include the buffer 
headers, which account for approximately 22 percent more memory. 

The Metadata Cache and Memory 
The default maximum size of the JFS metadata cache varies depending on the amount of physical 
memory in the system according to the following table: 

 
Memory Size (Mb) JFS Metadata Cache (Kb) JFS Metadata Cache as a percent of 

physical memory 

512 64,000 12.2% 

1024 128,000 12.2% 

2048 256,000 12.2% 

8192 512,000 6.1% 

32768 1,024,000 3.05% 

131072 2,048,000 1.53% 

 
If the size of memory falls between two ranges, then the maximum sizes is calculated in proportion to 
the two neighboring memory ranges.  For example, if the system has 4 GB of memory (4096 Mb), 
then the calculated maximum metadata cache size is 356,040 Kb, a value proportional to the 2-GB 
and 8-GB range. 

For systems equipped with memory cells that can be configured as removable, the size of the JFS 
Metadata Buffer Cache cannot be more than 25% of kernel available memory.   

Note that the table represents the maximum size of the metadata cache, which includes buffer 
headers and buffer pages. The cache is dynamic so it will expand as the metadata is accessed and 
contract slowly. Operations that touch a lot of metadata, such as a system backup, will attempt to 
bring all the metadata into the cache.  However, it is possible that there is not enough metadata to fill 
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the cache, even if all the metadata is brought into the cache.  Use the vxfsstat command to see 
how much metadata is in the cache and what the maximum size is for buffer pages. 

Note that memory usage from the table accounts for both buffer pages and buffer headers. It does not 
include other overhead for managing the metadata cache, such as the hash headers and free list 
headers.  The buffer headers are dynamically allocated and deleted as needed and the size of the 
buffers may vary, so the actual number of buffer headers will vary as well. However, the total amount 
of memory for the buffers and buffer headers cannot exceed the predefined maximum size. 

Tuning the Metadata Cache 

The vx_bc_bufhwm kernel tunable specifies the maximum amount of memory in kilobytes (or high 
water mark) to allow for the buffer pages and buffer headers. You can set this value the with sam or 
kmtune/kctune command, or in the /stand/system file. By default, vx_bc_bufhwm is set to 0, 
which means to use the default maximum size based on the physical memory size (see the previous 
table). 

For VERITAS journaled file system (VxFS) 3.5, the system must be rebooted after changing 
vx_bc_bufhwm for the new value to take effect. With VxFS 4.1 on 11i v2, you can immediately set 
vx_bc_bufhwm without a reboot using the kctune command. 

When using vxfsstat to view the current size of the metadata buffer cache, only the buffer pages 
are counted. For example, consider the following vxfsstat output for a system with 4 GB of main 
memory: 

  # vxfsstat -b / | grep current 
      74752 Kbyte current     414384 maximum 

In the previous example, 74,752 Kb is used for the buffer pages.  Up to 22 percent of additional 
space will be used for the buffer headers (or 16,446 Kb for this example). Note, however, that the 
memory used for buffer pages cannot exceed 414,384 maximum, and the total amount of memory 
for both buffer pages and buffer headers cannot exceed the maximum size of the metadata cache, or 
the vxfs_bc_bufhwm (in this example, 507,576 Kb). 

Autotuning with OL* additions and deletions 
Beginning with VxFS 4.1 on HP-UX 11i v3, when cells are added or deleted with cell-based systems, 
the vx_bc_bufhwm is autotuned if vx_bc_bufhwm was originally set with the default value of 0.  
However, the JFS Metadata Cache cannot take more than 25% of the kernel available memory.  For 
example, if you have a system with 2GB of base kernel memory and use OL* to add an additional 6 
GB, then vx_bc_bufhwm would be autotuned from 256,000 Kb to 512,000 Kb.  If another additional 
4GB of memory is added, vx_bc_bufhwm will remain at 512,000 Kb since the JFS Metadata Buffer 
Cache cannot exceed 25% of kernel available memory (2GB in this case).   
 
If you manually tune vx_bc_bufhwm to be a specific size, vx_bc_bufhwm will not be adjusted if 
memory additions or deletions are done, and you may need to adjust vx_bc_bufhwm if an different 
sized JFS Metadata Buffer Cache is needed after the OL* addition or deletion.   
 

Recommended Guidelines for tuning the JFS Metadata Buffer Cache 

If you upgrade from JFS 3.3 to JFS 3.5 on HP-UX 11i v1, then the metadata cache can take up to 
12.2 percent of memory, depending on memory size and the amount of metadata accessed, above 
what was taken by JFS 3.3 since the metadata on JFS 3.3 was included in the HP-UX buffer cache. 
The new metadata cache can potentially increase the performance of metadata-intensive applications 
(for example, applications that perform a high number of file creations/deletions or those that use 
large directories). 
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However, the memory cost must be considered. If the system is already running close to the low 
memory threshold, the increased memory usage can consume memory that could potentially be used 
for other applications, potentially degrading the performance of other applications. 

Note that file systems with a large number of small files can have much more metadata than a larger 
file system with a smaller amount of large files. There is no way to predict how much metadata will be 
brought into the cache.   

Consider the following example, a 2-GB system with dbc_max_pct parameter set to 20 percent 
running JFS 3.3 on 11i v1: 
 

 
The JFS file system is then upgraded to JFS 3.5. The dbc_max_pct parameter is still 20 percent, but 
the metadata buffer cache has an additional 12 percent of memory.  If the metadata cache is fully 
used, then less space exists for other applications. If you still desire to use only 20 percent for the 
buffer cache for both data and metadata, then the tunables must be evaluated and changed. 

 

 
As a suggestion, consider the maximum amount of data and metadata that is desired, and then 
consider the amount of metadata as a percentage of overall data. Going back to the previous 
example, if the system should use a maximum of 20 percent of memory for both data and metadata, 
and you desire a 90/10 ratio of data to metadata, then change dbc_max_pct to 18 and 
vx_bc_bufhwm to 40,000 (or 40 Mb which is 2 percent of the 2 GB physical memory). 
 

 
Note that this example uses a 90/10 ratio of data to metadata. The ratio you choose may be 
different depending on your application usage. The 90/10 ratio is probably good for applications 
that use large files, such as database applications. Applications that use lots of small files with 
frequent file creations/deletions or large directories, such as file servers, may need more space for 
metadata, so a 60/40 or 50/50 ratio may be appropriate. 
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Semaphores Tables 
Many third-party applications, databases in particular, make extensive use of the semaphores 
(commonly referred to as System V IPC) available in HP-UX 11i v1 and higher. The installation guides 
of third party products often recommend changing the tunables associated with semaphores. The 
purpose of this document is to describe the memory impacts that are caused by changing these 
tunables. 

This section addresses the following questions about semaphores: 

• What is a semaphore? 

• What interfaces are used to access semaphores? 

• What tunables affect semaphore memory usage? 

• How much memory is used to manage the semaphore tables? 

• Are there any guidelines for configuring the semaphore tables? 

What is a Semaphore? 
Although this document will not go into the details of implementation, it is important to understand 
what a semaphore is, how it is used, and what the various tunables actually control.  

In simple terms, a semaphore is a construct that is used to control access to a set of resources. It has a 
count associated with it that determines how many resources are available. Resources are allocated 
by decrementing the count and returned by incrementing the count. All updates to the semaphore are 
done atomically through system calls. When all resources have been given out, the next process that 
attempts to allocate one will go to sleep until a resource is freed, at which point it will be awakened 
and granted access.  

A simple example will suffice to make this clear. Suppose we have three stations that can serve us. 
We can control access by having 3 tokens. The first person takes a token, then the second person, 
then the third person. Each of these people can be served simultaneously. If a fourth person wishes to 
be served, that person must wait until a token becomes available. When any person finishes, the 
token is returned and the next person in line can take it. Of course, the degenerate case is when the 
count is set to 1, which is how one could implement exclusive access. This is the basic idea and is the 
mechanism databases frequently use to control concurrent access.  

Interfaces 
 
There are three main interfaces that you can use to manage semaphores:  semget(), semctl(), 
and semop().  The semget()routine allocates a set of semaphores.  You can allocate more than 
one semaphore at a time and operations can be conducted on these sets.  A successful call to 
semget() will return a semaphore identifier.  The semop()routine operates on a set of semaphores.  
Finally, the semctl() routine performs control operations on the semaphore set.  For more details, 
refer to the manpages for these calls. 
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Tunables 
Below are the tunables related to semaphores, which are described in the following table:  

Tunable Description 

sema Enable or disable System V IPC semaphores at boot time 

semaem Maximum cumulative value changes per System V IPC semop() call 

semmni Number of System V IPC system-wide semaphore identifiers 

semmns Number of System V IPC system-wide semaphores 

semmnu Maximum number of processes that can have undo operations pending 

semmsl Maximum number of System V IPC semaphores per identifier 

semume Maximum number of System V IPC undo entries per process 

semvmx Maximum value of any single System V IPC semaphore 

 

You can find links to these section 5 tunables on the HP documentation website at 
http://www.docs.hp.com.   

Of the tunables described in the previous table, the semaem and semvmx tunables represent limits 
associated with the values in the semaphores. These tunables do not affect semaphore memory 
consumption.  The other tunables, such as semmni, semmns, semmnu, semmsl and semume, are 
related to memory utilization.  The tunable sema is obsolete as of HP-UX 11i v2 

The Semaphore Tables 
Until recently, the semaphore tables were statically sized, meaning that entire tables were allocated in 
memory when the system booted.  Semaphores are allocated in groups of one or more from the 
semaphore table using the semget() system call.  The semget() system call returned a semaphore 
ID from the semaphore ID table, which was then used to access the defined group of semaphores.   

However, beginning with PHKL_26183 on HP-UX 11i v1, the semaphore entries that make up the 
semaphore table were dynamically allocated. By dynamically allocating semaphores, the system was 
able to reduce memory usage previously caused by allocated but unused semaphores. It can also 
resolve the fragmentation issues that could occur in the semaphore table. Other tables such as the 
semaphore undo table remained static. 

The other significant change is related to the semaphore table itself. The semmns tunable now 
represents a limit to the number of semaphores that can be allocated in total. They are allocated as 
needed and freed when not in use. The caveat here is that the boot time table is still allocated even 
though it is not used (in HP-UX 11i v1). As a result, you allocate space for semmns semaphores and 
allocate space at run time for the semaphores that are currently in use. One other notable change 
was put into PHKL_28703 for HP-UX 11i v1, which lifts the restriction of 32,767 on semmns. With 
this patch installed, the new limit is 1,000,000.  

The following figure shows the relationship between the semaphore ID table and the semaphore per 
semaphore identifier. 
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The semmni tunable sizes the semaphore ID table that maintains the system-wide semaphore 
identifiers. Each entry in the array is 96 bytes, so each increment to semmni will increase the boot 
time kernel size by 96 bytes. 

The semmsl tunable defines the maximum number of semaphores per semaphore identifier. It does 
not size a specific static table. Each semaphore is 8 bytes. 
 
The semmns tunable keeps track of the system-wide semaphores. Semaphores are allocated 
dynamically based on requested number of semaphores through semget(2) call and up to the limit 
of semmns tunable value across the system.  

The semaphore undo table is slightly more complex. When a process terminates because of abort or 
signal, the effects of a semaphore operation may need to be undone to prevent potential applications 
hangs. The system needs to maintain a list of pending undo operations on a per-process basis.  

The semume tunable specifies the number of semaphore undo operations pending for each process. 
Each semaphore undo structure is 8 bytes in size, and there are 24 bytes of overhead for each 
process. As a result increasing semume increases the semaphore undo table by 8 bytes per process.  

The semmnu tunable specifies the number of processes that can have semaphore undo operations 
pending. Increasing semmnu increases the size of the semaphore undo table based on the value of 
semume. 
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Use the following formula to calculate the size of the system semaphore undo table:  

((24+(8*semume)) * semmnu) 
  

Keep this formula in mind when changing these tunables since the effects on the boot time kernel size 
are multiplicative. How many undo structures does one need? There is no single answer to that, but it 
is important to note that undo structures are only allocated if the application specifies the SEM_UNDO 
flag. Thus, it is not necessary to bump these values unless the application installation guides instruct 
you to do so.  

How can one go astray? Here is a real-life example. A customer tuned semmni to 10,000 and 
decided to also set semume and semmnu to 10,000. The first change was not significant, consuming 
only 80,000 bytes. However, the second set of changes resulted in the allocation of 
((24+(8*10000))*10000) or 800,240,000 bytes! This was clearly not what the customer really 
wanted.  

The following table is a summary of memory usage based on the semaphore tunables:  

Kernel Table Tunable Element Size Default Setting 

Semaphore IDs semmni 88 bytes 2048 

Semaphore table semmns 8 bytes 4096 

- semmsl - 2048 
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Semaphore undo table semmnu  24 bytes + (8*semume) 256 (semmnu) 
100 (semume) 

 

Changes in HP-UX 11i v2 
Beginning with the HP-UX 11i v2, the dynamic changes described in the previous section define the 
default behavior; therefore, no patch is necessary.  The sema tunable has been obsoleted.  The sizes 
of the data structures remain the same, so all of the formulas for calculating the kernel boot size 
remain the same. Keep in mind that the semaphores themselves (limited by semmns) are allocated as 
needed and will not consume space at boot time. Thus, memory usage will grow and shrink as 
semaphores are allocated and freed. The other data structures are still allocated at boot time; 
therefore, you must be careful when changing semmnu and semume. One last change is that the limit 
on the total number of semaphores in the system has been enlarged. The new limit is 335,534,080, 
as described on the manpage.  

Guidelines for Configuring Semaphores 
Many third-party applications make heavy use of the Sys V IPC semaphore mechanism available 
within HP-UX.  Understanding all of the tunables, what they represent, and how changing them can 
affect the memory consumed by your kernel is important so that you do not mistakenly tune the 
semaphores too high, leaving too little memory to accomplish other important tasks. 

One of the most common mistakes is the setting of the semaphore undo table.  Remember that there is 
a multiplicative effect from setting semmnu and semume. 

Also, if you manage multiple systems, be sure that the semaphore tables are scaled appropriately 
given the memory size of each.  A given set of tunables may work great on a system with 8 GB of 
memory, but have severe memory implications on a system with only 1 GB of memory. 



For more information  
http://docs.hp.com 
HP technical documentation Web site. 
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