
Oracle9i Database

OORRAACCLLEE99II MMEEMMOORRYY MMAANNAAGGEEMMEENNTT:: EEAASSIIEERR TTHHAANN EEVVEERR

Sushil Kumar, Oracle Corporation
Sushil.Kumar@oracle.com

INTRODUCTION
Oracle9i has made significant advances in the area of memory management. It is now possible to dynamically resize
SGA components and control the PGA memory utilization at the instance level. But that is not all; Oracle9i also
provides a set of server-based advisories that help administrators tune various memory components optimally. This
presentation takes a closer look at these features, explains how exactly they work, and recommends best practices for
using them.

DYNAMIC SGA

OVERVIEW

Since its inception, the System Global Area (SGA) has been a static allocation of memory, shareable across all Oracle
threads of execution. The size of the shareable memory is calculated based on the values of initialization parameters
and once allocated, the amount of shareable memory used by an Oracle instance cannot grow or shrink. Oracle
subsystems assume memory is allocated at startup, and it is not relinquished during the lifetime of the instance. If the
database administrator wants to increase the size of the buffer cache, the instance must be restarted with new
parameter values.

Oracle9i makes it simple to add or remove memory to or from an Oracle instance by allowing administrators to
change the SGA configuration without shutting the instance down. Dynamic SGA allows administrators to use the
ALTER SYSTEM command to

• Grow the size of SGA components (Buffer Cache, Shared Pool, Large Pool).

• Shrink SGA by reducing the size of SGA components to an Oracle prescribed minimum.

Oracle9i also includes advisories to help administrators determine the optimal size for the buffer cache and the shared
pool. These advisories can be used to determine whether the SGA needs to be shrunk or grown for the present
workload.

There are numerous advantages of dynamic SGA. For instance, it allows the buffer cache to relinquish memory to
other SGA components (such as shared and large pool) if the memory requirements of these components increase.
Conversely, it also allows the size of buffer cache to increase at the expense of the shared pool, if the buffer cache hit
ratio is low. It also makes it possible to accommodate changes in the memory available to database instance resulting
either from changes to system hardware or changes to the OS resource manager enforced resource allocation.

CONCEPTS

NEW INITIALIZATION PARAMETERS
Oracle9i introduces a set of new initialization parameters for sizing the buffer cache. These parameters are more
intuitive and user friendly. The new parameters are:

New Parameter Unit of
Specification

Deprecated Parameter

DB_CACHE_SIZE KB, MB, GB DB_BLOCK_BUFFERS

Paper # 32706

Oracle9i Database

New Parameter Unit of
Specification

Deprecated Parameter

DB_KEEP_SIZE KB, MB, GB BUFFER_POOL_KEEP

DB_RECYCLE_SIZE KB, MB, GB BUFFER_POOL_RECYCLE

As may be noted above, the new parameters are specified in terms of amount of memory, and not in the unit of
number of blocks as was the case with the deprecated parameters. The other major difference is that the KEEP and
RECYCLE pools are allocated independent of the default buffer cache. Therefore unlike DB_BLOCK_BUFFERS,
DB_CACHE_SIZE does not subsume the KEEP (DB_KEEP_SIZE) and RECYCLE (DB_RECYCLE_SIZE)
buffer pools.

In addition, another set of new parameters has been introduced in Oracle9i to support the multiple block size feature.
Oracle9i allows creation of tablespaces with different block sizes. However before creating a tablespace with a “non-
standard” block size (i.e. block size different than that specified by DB_BLOCK_SIZE parameter), the corresponding
buffer cache should be created using the parameters listed below.

New Parameter Unit of
Specification

Description

DB_2K_CACHE_SIZE KB, MB, GB Buffer Cache for 2K Blocks

DB_4K_CACHE_SIZE KB, MB, GB Buffer Cache for 4K Blocks

DB_8K_CACHE_SIZE KB, MB, GB Buffer Cache for 8K Blocks

DB_16K_CACHE_SIZE KB, MB, GB Buffer Cache for 16K Blocks

DB_32K_CACHE_SIZE KB, MB, GB Buffer Cache for 32K Blocks

The DB_nK_CACHE_SIZE parameters can only be used to specify the cache size for non-standard block sizes.
Therefore, if the “standard” block, as specified by DB_BLOCK_SIZE parameter, is 8K, it is illegal to set
DB_8K_CACHE_SIZE parameter.

In order to be able to resize the buffer cache dynamically, a DBA must use the new parameters. The deprecated
parameters continue to be static and hence their values cannot be changed without restarting the instance.
Furthermore, these parameters cannot be combined with the new parameters i.e. combining them in the same
parameter file will produce an error. If the deprecated parameters are used, a warning message will be written to the
alert log to encourage users to migrate to the new parameter scheme.

The SGA_MAX_SIZE parameter has been added to specify the maximum size of the SGA for the lifetime of the
instance. A resize operation will succeed as long as it does not seek to increase the total SGA size beyond this value.

UNIT OF ALLOCATION
Prior to Oracle9i, the SGA implementation allowed the operating system dependent code to determine the minimum
size of an individual allocation for a particular subsystem requiring memory. The buffer cache, the shared and large
pools, and the redo buffers were treated as independent logical sections of the SGA with the product lines
determining the minimum allocation sizes and other attributes for shared memory.

In the dynamic SGA model, the generic code specifies the unit of allocation for the SGA memory. The new unit of
allocation is called a granule whose size is platform dependent and is largely determined by the total (maximum) SGA
size. On most UNIX platform, including Solaris, if the total SGA size is less than 128 MB, the granules are of 4 MB.
Otherwise they are of 16 MB. On NT, the granule size is 4 MB if the value of the SGA_MAX_SIZE parameter is less
than 128 MB and 8 MB otherwise. For other platforms, please refer to your OS specific documentation.

Paper # 32706

Oracle9i Database

The buffer cache, the shared pool, the large pool, and other components allocate and free SGA space in units of
granules. Oracle tracks SGA memory use in integral numbers of granules, by SGA component. No two components
can divide the space within one granule.

ALLOCATION OF SGA MEMORY AT STARTUP
At startup time, Oracle allocates virtual address space for the SGA based on the value of the SGA_MAX_SIZE
parameter, rounded up to the next granule size, and the operating system memory limits.

When the instance is started, Oracle allocates granule entries, one for each granule to support SGA_MAX_SIZE bytes
of address space. This allocation is made only for the virtual address space and not for the physical memory. Oracle
rounds the value of each initialization parameter, which defines the amount of SGA memory a component allocates
e.g. DB_CACHE_SIZE, SHARED_POOL_SIZE, etc., to the nearest granule size multiple. Each component
allocates an integral number of granules. The minimum size of the SGA is two granules, one each for the buffer cache
and shared pool, plus the memory required for the fixed SGA and other metadata, including redo buffers.

GROWING A SGA COMPONENT
A database administrator can add memory to a SGA component by issuing the ALTER SYSTEM command to
modify the corresponding initialization parameters value. Oracle then rounds up the given target size to the nearest
multiple of granule size, and adds or takes away granules to meet the target size.

Adding memory to a SGA component will succeed only if Oracle has enough free granules to satisfy the request.
Oracle does not automatically start freeing another component’s granules for adding it to a given component. Instead,
the database administrator must ensure that the instance has enough free granules to satisfy the growth requirement
either by shrinking another component or by reserving enough granules at the time of instance startup by setting the
value of the parameter SGA_MAX_SIZE appropriately. If the used SGA memory is less than the SGA_MAX_SIZE,
Oracle can allocate more granules until the SGA size reaches this limit. If the value of the SGA_MAX_SIZE
parameter is not explicitly specified, it is set equal to the current SGA size by default. Under such circumstances, the
size of any SGA component cannot be increased without shrinking another component. The following examples will
illustrate these concepts better:

Example 1

Initialization parameter values:
SGA_MAX_SIZE = 144M

Memory used by other non-variable SGA components : 16 MB

Maximum combined size of the shared pool and buffer cache: 144-16= 128 MB
DB_CACHE_SIZE = 96M
SHARED_POOL_SIZE = 32M

Now we try to grow the shared pool by 32M

SQL> alter system set shared_pool_size=64M;
alter system set shared_pool_size=64M
*
ERROR at line 1:
ORA-02097: parameter cannot be modified because specified value is
invalid
ORA-04033: Insufficient memory to grow pool
The operation did not succeed because enough free granules do not exist.

Let us now shrink the buffer cache by 32M:
SQL> alter system set db_cache_size=64M;

Paper # 32706

Oracle9i Database

System altered.
Let us try the failed operation again:

SQL> alter system set shared_pool_size=64M;

System altered.

Example 2

Initialization parameter values:
SGA_MAX_SIZE = 256M
DB_CACHE_SIZE = 96M
SHARED_POOL_SIZE = 32M

SQL> alter system set shared_pool_size=64M;

System altered.

In this case, we did not have to shrink the buffer cache since enough free granules were allocated at
the time of the instance startup due to larger value of the SGA_MAX_SIZE parameter.

SHRINKING A SGA COMPONENT
Decreasing the number of granules for a SGA component is a more complicated than increasing them. In order to
free memory, a component must perform two actions. First, the component must decide which granules it intends to
free and prevent any new allocations of these granules. It should then wait to free the granules until all references to
them have been removed. In case of the buffer cache, data contained in the granule to be freed can be written back to
disk but for shared pool, Oracle must wait until the sessions/operations using those granules have completed. Once
this is done, the component is allowed to free the granule.

A shrink operation, which tries to reduce the size of a SGA component by a large amount, may, therefore, take a long
time to complete. This is particularly true for the shared pool since de-allocating memory from shared pool is more
complicated than doing so from any other SGA component. Therefore an operation, which is seeking to reduce the
shared pool to an extremely small size (e.g. 10M or lower), may never be able to complete resulting in a "hung"
session. If such a situation is encountered, the resize operation in progress can be cancelled by interrupting the session
using CTRL-C or CTRL-D keystrokes

CONCURRENT RESIZE OPERATIONS
Only one resize operation can be executed for a given SGA component at a time. Therefore, if another buffer cache
resize operation is initiated while one is already in progress, it will fail with an error message. Multiple resize operations
for different components can, however, be executed simultaneously i.e. a buffer cache and a shared pool resize
operation can be executed concurrently.

LOCKING OF PHYSICAL MEMORY

Some Operating Systems (OS) support the ability to lock the SGA in physical memory in order to ensure that no part
of the SGA is ever paged out. The initialization parameter LOCK_SGA can be used to instruct Oracle to pin the SGA
in physical memory using port-specific routines. The undocumented initialization parameter _USE_ISM in used on
certain OS to share some virtual memory constructs (i.e. page tables) across processes and on versions of Solaris with
no dynamic ISM(DISM) support, this causes the physical memory for the SGA to be locked for the duration of the
instance. There may be a number other situations where the OS may implicitly lock the SGA depending on the system
configuration e.g. the use of asynchronous IO in HP-UX.

Whenever the SGA is locked in the physical memory, Oracle9i pre-allocates and pins the amount of memory equal to
the SGA_MAX_SIZE specification. In other words, an attempt to lock the SGA in the physical memory will result in

Paper # 32706

Oracle9i Database

the locking of memory equal to the maximum SGA size. While this guarantees the ability to grow the SGA
dynamically, it can result in wastage of system memory especially if the current SGA size is significantly smaller than
the SGA_MAX_SIZE specification. Therefore, in order to take advantage of true "dynamicity" of the SGA, the use
of the LOCK_SGA parameter (if available) is not recommended.

On Solaris, the _USE_ISM parameter is set to TRUE by default for performance reasons. On versions of Solaris with
no DISM support, this causes locking of physical memory equal to the SGA_MAX_SIZE specification. Although
setting the _USE_ISM parameter to FALSE will change this behavior, doing so is strongly discouraged since it can
lead to significant performance degradation. A better approach would be to upgrade the OS to Solaris8 which
supports dynamic intimate shared memory (DISM) capability1. DISM enables Oracle to lock the amount memory
equal to the current SGA size initially and grow the shared memory segment dynamically, whenever needed.

It is important to remind here that if the SGA is locked in the physical memory, either explicitly or implicitly, the
memory freed by shrinking an SGA component will not be released to the OS. In simple terms, the overall size of the
SGA cannot be reduced if it has been locked in the physical memory. The free memory (i.e. SGA_MAX_SIZE –
Current SGA Size) will just be reserved for any future growth operation.

VIEWING SGA STATISTICS

The view V$SGA can be used to find out the distribution of the SGA memory among the various components. The
following table describes each of the individual statistics reported in this view:

Statistics Name Description

Fixed Size Fixed Overhead

Database Buffer Size of the Buffer Cache

Redo Buffers Size of Redo Log Buffer

Variable Size Includes the Shared Pool, Java Pool, Large Pool and Free Memory

In Oracle9i Release 2, the V$SGA_DYNAMIC_COMPONENTS views the current sizes of dynamic SGA
components as well as a summary of all resize operations performed since start up. This view also contains the granule
size in use. Another new view introduced in Oracle9i Release 2, V$SGA_DYNAMIC_FREE_MEMORY, displays
information about the amount of free SGA memory available for future resize operations.

In Oracle9i Release 1, the amount of free SGA memory available at any point in time can be derived by subtracting
the sum of Shared Pool, Java Pool and Large Pool sizes from the "Variable Size".

The following script generates a detailed report of the SGA configuration:

set serverout on
declare
dbname varchar2(15); -- Database Name
tsgasize number; -- Total SGA Size
bcsize number; -- Buffer Cache Size
spsize number; -- Shared Pool Size
jpsize number; -- Java Pool Size
lpsize number; -- Large Pool Size
fsize number; -- Fixed SGA Size
rbsize number; -- Redo Buffers
used number; -- Used SGA Memory
free number; -- Free SGA Memory
granule_size number; -- Granule Size

1 DISM is supported on Solaris 8 release date 01/01 or later. Sun also recommends installing the patch 108528-16 while using the
dynamic SGA feature.

Paper # 32706

Oracle9i Database

tvsize number; -- Total Variable Size

cursor c1 is
select name, value from sys.v$parameter where name in ('java_pool_size',
'large_pool_size');

cursor c2 is
select name, value from sys.v$sga;

begin

 select name into dbname from sys.v$database;
 select x.ksppstvl/(1024*1024) into granule_size from sys.x$ksppsv x,
sys.x$ksppi y
 where x.indx=y.indx and y.ksppinm='_ksmg_granule_size';
 for cur1 in c1 loop
 case cur1.name
 when 'java_pool_size' then jpsize :=cur1.value;
 when 'large_pool_size' then lpsize :=cur1.value;
 end case;
 end loop;

 for cur2 in c2 loop
 case cur2.name
 when 'Fixed Size' then fsize := cur2.value;
 when 'Variable Size' then tvsize := cur2.value;
 when 'Database Buffers' then bcsize :=cur2.value;
 when 'Redo Buffers' then rbsize :=cur2.value;
 end case;
 end loop;

 /*Getting Shared Pool Size. Can not use shared_pool_size parameter
value due
 to bug 1673506*/

 select cursiz_kghdsnew*granule_size into spsize
 from sys.x$ksmsp_dsnew;

 tsgasize := (fsize+tvsize+bcsize+rbsize);
 free := (tvsize - ((spsize*1024*1024)+lpsize+jpsize));
 used := tsgasize - free ;

 dbms_output.put_line(' ');
 dbms_output.new_line;
 dbms_output.put_line('SGA Configuration for '||dbname);
 dbms_output.put_line('-------------------------------');
 dbms_output.put_line(' ');
 dbms_output.new_line;
 dbms_output.put_line('Current SGA Size :
'||round(used/(1024*1024),2)||' MB');
 dbms_output.put_line('Maximum SGA Size :
'||round(tsgasize/(1024*1024),2)||' MB');
 dbms_output.put_line('Memory Available for SGA Growth:
'||round(free/(1024*1024),2)||' MB');
 dbms_output.put_line('Buffer Cache Size : '||
round(bcsize/(1024*1024),2) ||' MB');
 dbms_output.put_line('Shared Pool Size : '|| spsize ||'
MB');
 dbms_output.put_line('Large Pool Size : '||
round(lpsize/(1024*1024),2) ||' MB');
 dbms_output.put_line('Java Pool Size : '||
round(jpsize/(1024*1024),2) ||' MB');
 dbms_output.put_line('Fixed SGA : '||

Paper # 32706

Oracle9i Database

round(fsize/(1024*1024),2) ||' MB');
 dbms_output.put_line('Redo Buffers : '||
round(rbsize/(1024*1024),2) ||' MB');
 dbms_output.put_line('Granule Size :
'||granule_size||' MB');
end;
/
set serverout off
set doc on

The above script must be run as a SYSDBA user. Its output will look some thing like:
SGA Configuration for TEST9I

Current SGA Size : 165.78 MB
Maximum SGA Size : 176.78 MB
Memory Available for SGA Growth: 11 MB
Buffer Cache Size : 64 MB
Shared Pool Size : 64 MB
Large Pool Size : 5 MB
Java Pool Size : 32 MB
Fixed SGA : .27 MB
Redo Buffers : .52 MB
Granule Size : 16 MB

TRACKING A RESIZE OPERATION IN PROGRESS

ORACLE9I RELEASE 2
The view V$SGA_CURRENT_RESIZE_OPS displays information about SGA resize operations which are currently
in progress.

ORACLE9I RELEASE 1
BUFFER CACHE
The V$BUFFER_POOL contains information about any buffer cache resize operation in progress.

SHARED POOL
Oracle9i Release 9.0.1 does not provide any dynamic view to track the progress of a shared pool resize operation.
Users with SYSDBA privilege can execute the following query to find out the status of a resize operation:
select round((a.cursiz_kghdsnew*b.ksppstvl)/(1024*1024),2)
"Current Shared Pool Size (MB)",
round((a.tarsiz_kghdsnew*b.ksppstvl)/(1024*1024),2)
"Target Shared Pool Size (MB)"
from sys.x$ksmsp_dsnew a, sys.x$ksppsv b, sys.x$ksppi c
where b.indx=c.indx
and c.ksppinm='_ksmg_granule_size'

The output of this script will look something like:
SQL> /
Current Shared Pool Size (MB) Target Shared Pool Size (MB)
----------------------------- ----------------------------
64 0

The "Target Shared Pool Size" column will display "0" if no shared pool resize operation is currently in progress.
Otherwise it will list the value to which the shared pool is being resized to.

RESIZE OPERATION “HISTORY”

The V$SGA_RESIZE_OPS view contains information about the last 100 completed SGA resize operations, not
including those currently in-progress. It is available only in Oracle9i Release 2.

Paper # 32706

Oracle9i Database

Every resize operation is also recorded in the alert log, both in Oracle9i Release 1 and Release 2. The information
recorded includes

• The ALTER SYSTEM command executed to resize a SGA component

• Time when the resize operation was initiated

• Current Size

• Target Size

• The outcome of the operation

Following is an excerpt from the alert log file showing the information mentioned above:
Wed Jun 13 13:46:20 2001
CKPT: Begin resize of buffer pool 3 (DEFAULT for block size 8192)
CKPT: Current size = 32 MB, Target size = 64 MB
CKPT: Resize completed for buffer pool DEFAULT for blocksize 8192
........
........
........
Wed Jun 13 13:46:58 2001
CKPT: Begin resize of buffer pool 3 (DEFAULT for block size 8192)
CKPT: Current size = 64 MB, Target size = 80 MB
CKPT: Could not allocate memory for
buffer pool DEFAULT, blocksize 8192

SGA SIZING ADVISORIES

BUFFER CACHE
A new initialization parameter DB_CACHE_ADVICE was introduced in Oracle9i Release 1 to enable estimation of
miss rates for different sizes of the buffer caches. This advisory uses simulation to populate the contents of a new
fixed view: V$DB_CACHE_ADVICE. The view contains different rows that predict the number of physical reads for
the cache size corresponding to the row. The rows also compute a "physical read factor" which is the ratio of the
number of estimated reads to the number of reads actually performed during the measurement interval by the real
buffer cache.

In Oracle9i Release 1, the buffer cache advisory is disabled by default. It can be enabled using the DB_CACHE_SIZE
initialization parameter, which can be set to either OFF, READY or ON. While the values of OFF and ON activate
and deactivate the advisory respectively, changing the value of this parameter from ON to READY preserves the data
collected so far in the V$DB_CACHE_ADVICE view but stops further simulation. Also, the advisory must be
disabled while resizing the buffer cache. Therefore, when an ALTER SYSTEM command is executed to resize the
buffer cache, the value of the DB_CACHE_ADVICE parameter is automatically changed to READY, if it is set to
ON at the time of initiating the resize operation. In order to continue collection of advisory statistics, it must be
manually reactivated.

Oracle9i Release 2 introduces a comprehensive set of advisories including shared pool sizing advisor, SQL Execution
Memory (PGA) Memory Advisor and Recovery Cost Estimator. All the advisories in Oracle9i Release 2 including the
Buffer Cache Advisor are controlled by a newly introduced parameter STATISTICS_LEVEL. The Parameter
DB_CACHE_ADVICE has, therefore, been deprecated in Oracle9i Release 2. By default, the STATISTICS_LEVEL
parameter is set to TYPICAL thereby enabling all the advisories.

V$STATISTICS_LEVEL lists the status of the statistics or advisories controlled by the STATISTICS_LEVEL
initialization parameter. Each row of V$STATISTICS_LEVEL represents one of these statistics or advisories. For
more details on the STATISTICS_LEVEL parameter, please refer to Oracle9i Release 2 Performance Tuning Guide
and Reference.

Paper # 32706

Oracle9i Database

In Oracle9i Release 1, if the DB_CACHE_SIZE parameter is set to either READY or ON at instance start up, the
additional memory required for simulation is separately allocated. However, if it is set to OFF while starting the
instance and its value is later changed dynamically to enable advisory, the simulation memory will be borrowed from
the shared pool which may cause some performance degradation when either the shared pool is very small or the
buffer cache is very large. This can be avoided by setting the DB_CACHE_SIZE to either READY or ON at instance
start up. The simulation algorithm for the buffer cache advisory has been revised in Oracle9i Release 2 to make it
more light weight. The Oracle9i Release 2 buffer cache advisory uses sampling technique to minimize its memory
requirement and performance overhead. The initial parameter setting, therefore, should not be an issue in Oracle9i
Release 2.

Figure 1: Buffer Cache Advisory (Oracle Enterprise Manager)

SHARED POOL
Oracle9i Release 2 introduces the shared pool advisory to provide information about library cache memory and
predict the effect of altering the shared pool size on the total amount parsing activities in the system. Two new

Paper # 32706

Oracle9i Database

dynamic views, as described below, provide the information regarding how much memory the library cache is
currently using, how much it is pinned, how much is on the shared pool's LRU list, and how the total instance wide
parse time will change as a result of changing the shared pool size.

View Name Description

V$SHARED_POOL_ADVICE Displays information about estimated parse time savings in
different sizes of shared pool. The sizes range from 50% to
200% of current shared pool size, in equal intervals. The value of
the interval depends on current shared pool size.

Parse time saved refers to the amount of time saved by keeping
library cache memory objects in the shared pool, as opposed to
having to reload these objects.

V$LIBRARY_CACHE_MEMORY Contains information about memory allocated to library cache
memory objects in different namespaces. A memory object is an
internal grouping of memory for efficient management. A library
cache object may consist of one or more memory objects.

These views display any data when shared pool advisory is on and reset when the advisory is turned off.

Paper # 32706

Oracle9i Database

Figure 2: Shared Pool Advisory (Oracle Enterprise Manager)

CUSTOMER IMPLEMENTATION CASE STUDIES

It is obvious that Oracle9i makes the SGA tuning process significantly simpler. While the ability to dynamically resize
the SGA components help prevent down time, the SGA sizing advisories take the guesswork out of the memory
tuning process. It is hardly surprising, therefore, that these features are being widely used by customers to optimize the
system resource utilization and enhance availability. Following table lists some of these customers:

Customer Name Business Description System/Environment Details
Talkline Mobile phone & services company

in Germany
(http://www.talkline.de)

• Sun E-10000 (20 CPUs, 8GB RAM)

• 4 x A5200 (72 x 18 GB disks), 1 x A3500
(18 x 9 GB disks), 340 MB/sec.
throughput

Paper # 32706

Oracle9i Database

• DWH: 1/2 TB raw data, largest table
100 GB

Nordac A leading IT partner and service
provider for medium-sized companies
in Germany
(http://www.nordac.de)

50 GB 2-node RAC database supporting a
Logistics application running on 1 GHz single
CPU ES45 Alpha Server (True64) with 4GB RAM

Bauer Verlagsgruppe A major German publishing group
(http://www.hbv.de)

3 GB 2-node (Two IBM Netfinity 5800R systems
with 4 CPUS and 4GB RAM each)RAC OLTP
database serving up to 250 users

Postbank A Germany based international
banking group
(http://www.postbank.de)

Oracle9i Release 2 RAC running on HP-UX

AUTOMATIC SQL EXECUTION MEMORY MANAGEMENT

WHAT IS SQL EXECUTION MEMORY?

Besides SGA, the Oracle Database also assigns each server process a private memory region called the “Program
Global Area” (PGA). A PGA is created for each server process when it is started i.e. when a new session is initiated
while using the dedicate server configuration or, when a new shared server process is created. It contains data and
control information for a server process and, unlike the SGA, each server process has exclusive access to its PGA.

Figure 3: Oracle Database Instance Memory Model

Although the actual content of the PGA varies depending on whether a process is running in dedicated or shared
mode, it can generally be categorized as follows:

• Session Memory: The memory allocated to hold session’s logon information and other such details. For
shared server processes, this information is stored in the SGA.

• SQL Execution Memory: The memory allocated on behalf of SQL statements being executed. The SQL
Execution Memory has a persistent and a run time area

o The persistent area is allocated when a cursor is opened for SQL execution. It contains the
information that persist across multiple execution of the same statement (i.e. cursor) such as, bind
details, data type conversion, etc. The persistent area is de-allocated when the cursor is closed. For
shared server processes, the persistent area is a part of the SGA.

Paper # 32706

Oracle9i Database

Paper # 32706

o The runtime area contains information used while a SQL statement is being executed. Its size
depends on the type and complexity of SQL statement as well as the number and size of rows being
processed. It is de-allocated once the execution completes. For shared sever processes, the run time
area is resides in the PGA for DML/DDL operation and in the SGA for queries. For complex
queries, such as those used for reporting purposes or as adhoc queries in a data-warehousing
environment, a large portion of the run time SQL execution memory is dedicated as the working area
for operations such as sort, hash-join, bitmap-merge, etc.

HOW DOES SQL EXECUTION MEMORY IMPACT QUERY PERFORMANCE?

Generally speaking, larger working area can significantly improve the performance of these operations and thereby,
reduce the response time of queries. Ideally, the size of work area should be big enough such that it can accommodate
all input data and auxiliary structure needed by the operation. This is referred to as the cache size of the work area.
When the actual amount of memory available is less than the cache area, the response time increases since only a part
of the input data can be accommodated in memory necessitating an extra pass over all or part of the input data. This is
referred to as the one-pass size of the work area. When enough memory is not available to run an operation even in the
one-pass mode, multiple passes over input data are required causing dramatic increase in performance time. For
example, a sort operation that needs to sort 10GB of data may need a little more than 10 GB memory to run in the
cache mode and about 40 MB to run in the one-pass mode. If the amount of memory available to this operation is less
than 40 MB, it will run in the multi-pass mode.
Figures 4 and 5 below illustrate the response time characteristics of sort and hash-join operations respectively as a
function of available memory.

Figure 4: Effect of Memory on Sort Performance Figure 5: Effect of Memory on Hash-Join Performance

The one-pass point denotes the start of region when the operation runs in the one-pass mode whereas the cache point
corresponds to the case when the amount of available memory is equal to the cache size of the operation. The sort
curve is flat between these two points since the sort operation does not benefit from additional memory unless it can
run in the cache mode. The response of hash-join operation decreases in steps between one-pass and cache points
with each steps corresponding to an extra hash partition that can be kept in memory.
It is, therefore, obvious that proper sizing of the SQL work areas is extremely critical to performance of complex long
running queries. Prior to Oracle9i, DBAs needed to manually adjust parameters like SORT_AREA_SIZE,
HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE and CREATE_BITMAP_AREA_SIZE to control the sizes
of these working areas. This may be a challenging task since the queries running against any real world database widely
differ in their nature and complexity making it very difficult to come up with a setting that optimizes the overall
system performance without leading to any resource wastage.
Thankfully, Oracle9i provides an entirely new way of managing the PGA memory. As opposed to relying on DBAs to
individually size the work areas, Oracle9i just lets them specify the maximum PGA memory that can be used by a
database instance using a new initialization parameter, PGA_AGGREGATE_TARGET. The database server then
automatically determines the optimal work area sizes for each active operation and distributes the available memory
among them in a manner which maximizes the overall system performance.

Oracle9i Database

HOW DOES AUTOMATIC SQL EXECUTION MEMORY MANAGEMENT WORK?

The Automatic SQL Execution Memory Management feature uses a sophisticated feedback mechanism (as depicted in
figure 6) to dynamically regulate the amount of memory used by various active operations.

Figure 6: Memory Management Feedback Loop

When a SQL operation is started, it registers its work area profile using “local memory manager” services. The work
area profile describes the characteristics of a work area such as its type (e.g. sort, hash-join, group-by), its current
minimum, one-pass and cache memory requirement, its degree of parallelism (DOP) if it is a parallel operation, and
amount of PGA memory currently in use. The local memory manager stores the registered work area profiles in the
SGA. This information is continuously updated by the SQL operation to reflect its current memory need and
consumption. This makes it possible for the database server to accurately determine the instance wide PGA memory
need and consumption at any time by merely looking at the registered active work areas profiles. Finally, the work
profile is de-registered, or removed from the set of active work area profiles, when the SQL operation completes.

The global memory manager is a service executed by one of the server background process. It indirectly determines
the size of each active work areas by publishing a “global” limit or bound at regular intervals, generally every three
seconds. The global memory bound is automatically derived from the number and characteristics of all active work
area profiles and is used to constrain the size of each work area. Hence, the higher the global bound is, the more is
memory available to each active operation. Since the goal of the global memory manager is to restrict the total instance
wide PGA memory consumption below the PGA_AGGREGATE_TARGET setting, it also means that the bound is
high when the system workload is light and vice-versa.
The calculation of the global memory bound is a two-step process. First an internal target (let us call it SQL Memory
Target) is derived from the PGA_AGGREGATE_TARGET setting for amount of PGA memory available to SQL
work areas. This to account for the part of PGA which isn’t dynamically resizable (i.e. persistent area + a part of the
run time area) and, to compensate for unforeseen factors such as delay on part of active operations to adapt to the
newly published bound. In Oracle9i, the PGA memory used by shared server (MTS) sessions isn’t automatically tuned.
The Automatic SQL Execution Memory management, however, still tries to limit the overall instance PGA memory
consumption to PGA_AGGREGATE_TARGET by treating the PGA memory used by shared server session as the
“untunable” memory and adjusting the internal “SQL Memory Target” accordingly.
Once the SQL memory target is determined, it is then translated into a local limit, the global memory bound. While
the global memory bound is usually published by a background process periodically, there may be situations where the
bound may become very “stale” due to sudden increase in the workload thereby needing an immediate refresh by the
SQL operation which detects the staleness. However, such incidences should be rare and most of the time the
background computation of the bound should be adequate.
The feedback loop is closed by the local memory manager. It uses the current value of the memory bound and the
current profile of a work area to determine the correct amount of PGA memory, called expected size, which can be
made available to this work area. The calculation of the expected work area size for each active operation is done
based on the following rules:

Paper # 32706

Oracle9i Database

• The expected size can never be less than the minimum memory requirement of the operation and more than
its cache size.

• If the global memory bound is between minimum and cache requirement, the expected size will be equal to
the bound. The only exception to this rule is a sort operation. For a sort operation, the expected size under
will be equal to one pass size if the bound is less than its cache size is less than the bound. This is due to the
fact that the sort operation does not benefit from more than one pass memory unless the whole operation can
be performed in cache, as explained earlier.

• For parallel operations, the expected size is multiplied by the degree of parallelism.
• Finally, no single operation will be allowed to “hog” all available memory. Therefore, the expected size can

never be more than 5% of the overall target for serial and more than 30% for parallel operations.

The expected size is checked periodically by SQL operations, which then adapt their work area size to the specified
value. Figure 7 below graphically illustrates how the expected size is determined based on the global memory bound.
Let us say that the PGA_AGGREGATE_TARGET is set to 150 MB and the derived internal SQL memory target is
133 MB. The global memory manager then sets the bound to 20 MB i.e. no single work area can use more than 20 MB
of the PGA memory. Now, let us also assume that the available memory needs to be distributed among six currently
active operations with work area profile WP1, WP2, WP3…WP6. The work area profile WP1 corresponds to a serial
sort operation with 27 MB cache and 7 MB one pass requirement. Similarly, the work area profile WP3 is for a parallel
hash-join operation with degree of parallelism 2 and it requires 67 MB of memory to run in cache and 11MB to run in
one-pass mode. With a global memory bound of 20 MB, the expected size for WP1 will be 7 MB (its one-pass
requirement) and that of WP3 will be 40 MB i.e. twice the bound since its degree of parallelism is 2.

 Expected 7MB 8MB 40MB 15MB 44MB 19MB
 Size

Figure 7: Calculation of Expected Size

BENEFITS OF AUTOMATIC SQL EXECUTION MEMORY MANAGEMENT

MANAGEABILITY
The Automatic SQL Execution Memory Management feature makes the management of PGA memory significantly
easier by liberating administrators from having to size individual work areas. Instead, they can just set an instance wide
upper limit on the amount of PGA memory available to an instance and leave the rest to the database server. In other
words, with Oracle9i, DBAs no longer need to worry about parameters such as SORT_AREA_SIZE,
HASH_AREA_SIZE, CREATE_BITMAP_AREA_SIZE and BITMAP_MERGE_AREA_SIZE; they now have to
deal with just a single parameter, PGA_AGGREGATE_TARGET which is much easier and intuitive to configure.
This feature also makes it possible for administrators to restrict the PGA memory consumed by an instance no matter
what the workload is. This is significant because in the old scheme of things, the total instance PGA memory could
grow in an uncontrolled fashion due to a sudden increase in the workload thereby degrading the performance of all
applications sharing a host machine.

Paper # 32706

Oracle9i Database

PERFORMANCE
Besides making the PGA memory configuration easier for administrators, the Automatic SQL execution memory
management feature also maximizes the system performance by ensuring the most optimal use of available memory.
Figures 8 and 9 summarize the results of an Oracle internal performance evaluation comparing the manual (pre-
Oracle9i) and automatic modes. The test was performed on a SUN E4000 hardware with 10 167 MHz CPUs, 2 GB
physical memory using a 30GB TPC-H database with the number of users varying from 1 to 20. The observations
were recorded for three different configurations, 1. Manual SQL memory management with SORT_AREA_SIZE and
HASH_AREA_SIZE set to 5 MB (Manual-5), 2. Manual SQL memory management with SORT_AREA_SIZE and
HASH_AREA_SIZE set to 15 MB (Manual-15), and 3. Automatic SQL memory management with the parameter
PGA_AGGREGATE_TARGET set to 1.5 GB.

 Figure 8: Automatic Vs. Manual (Memory Used) Figure 9: Automatic Vs. Manual (Response Time)

As can be seen in figure 8, the memory consumption increases linearly in both the manual modes. Also, while the
available memory remains mostly underutilized (up to 16 users) for Manual-5 configuration, the system starts over-
allocating memory with 6 or more users in Manual-15 configuration causing it to thrash very quickly. The Automatic
mode obviously does a better job: it ensures full utilization of the available memory while keeping the total memory
consumption below the administrators defined target irrespective of the number of users.

Figures 10 and 11 illustrate how well the Automatic SQL Memory management feature adapts to variations in the
database workload. When subjected to a fluctuating workload, as shown in figure 8, it quickly adjusts the global
memory bound ensuring that the total memory consumption remains very close (within about 5%) to the
administrator defined limit.

 Figure 8: Varying Workload Figure 9: Total PGA Memory Consumption

Paper # 32706

Oracle9i Database

The temporary excess allocation is expected since operations may take some time to adapt to a new global memory
bound. It is, however, very short-lived and total memory consumption quickly falls below the
PGA_AGGREGATE_TARGET setting.

ABILITY TO FREE MEMORY BACK TO OS
Prior to Oracle9i, there was no way to free the PGA memory once allocated to a process until it is terminated. The
Automatic SQL Memory Management feature uses a new real free system call which allow the database instance to
give memory back to the operating system when it is no longer being used or when the value of the parameter
PGA_AGGREGATE_TARGET is reduced.

ENABLING AUTOMATIC SQL MEMORY MANAGEMENT

The Automatic SQL Memory Management feature can be enabled by setting the parameter
PGA_AGGREGATE_TARGET to a non-zero value. The default value of this parameter is zero meaning that the
automatic mode is disabled by default. This is primarily to ensure backward compatibility. However, in view of all the
benefits explained above, Oracle Corporation strongly recommends using this feature.
When the Automatic SQL Execution Memory Management feature is enabled, any *_AREA_SIZE settings are
ignored. It is, however, still possible to temporarily revert to the manual mode, either at system or session level, by
setting the parameter WORKAREA_SIZE_POLICY to MANUAL. Under such circumstances, the SQL work areas
are sized based on SORT_AREA_SIZE, HASH_AREA_SIZE, etc., settings and the amount of memory used by
operation running in the manual mode is treated as “untunable memory”. The internal SQL memory target is adjusted
accordingly and the amount of memory made available to operations running in the auto mode is reduced in order to
honor the PGA_AGGREGATE_TARGET setting. It must be understood, however, that if the amount of memory
used by the operation running in the manual mode is large, the total PGA consumption of an instance may exceed the
PGA_AGGREGATE_TARGET value. Once again, the manual mode is supported only for backward compatibility
reasons and it should be used only under exceptional circumstances.

SETTING PGA_AGGREGATE_TARGET INITIALLY
FOR A NEW DATABASE
The initial value of the PGA_AGGREGATE_TARGET initialization parameter should be based on the total amount
of memory available to an instance, both SGA as well as PGA. The following rules-of-thumb may be used to divide
memory between SGA and PGA depending on the nature of workload.

• For OLTP systems, the PGA memory requirement is minimal. Hence, most of the available memory
(about 80%) should be given to the SGA and rest (i.e. 20%) to the PGA.

• For DSS or Data Warehousing systems running complex, memory intensive queries, most of the
memory (about 70%) should be assigned to the PGA leaving rest (30%) for the SGA.

• For mixed workload, the PGA memory requirement will vary from one situation to another. However,
as a guideline, about 60% of memory many be given to the SGA and rest (40%) to the PGA.

FOR AN EXISTING DATABASE
If the total amount of memory available to an instance cannot be precisely determined, the other option is to use the
PGA usage statistics collected by the Oracle9i Database. The V$PGASTAT view contains a number of statistics
related to the PGA consumption of an instance and is populated in both automatic as well as manual mode. Once the
instance has operated in the manual mode for a while, the value of the statistic “Maximum PGA allocated” can
provide a very a good starting value for the PGA_AGGREGATE_TARGET. This method should be used for
picking up the right PGA target for databases migrated from Oracle8i or older releases.

MONITORING SQL MEMORY USAGE

Following views can be used to monitor the functioning of the Automatic SQL Execution Memory Management

Paper # 32706

Oracle9i Database

feature.

INSTANCE LEVEL
V$PGASTAT
This view should be the primary reference for monitoring PGA memory usage. The information contained in this
view includes PGA memory currently used, maximum PGA memory allocated since instance start up and the “PGA
cache hit percentage”. The PGA cache hit percentage is a new concept in Oracle9i defined as the percentage of the
total amount of data processed by memory intensive SQL operators which was accommodated in the available PGA
memory. For example, let us assume that four sort operations have been performed in an instance, three with 1 MB
input data and fourth with 100 MB input data. The total input size is 103 MB. Now if one of the smaller sort
operation is run in the one-pass mode, an extra pass over 1 MB of data is performed. Therefore, 1 MB of extra data
had to be processed due to PGA not being large enough. The PGA cache hit percentage in this case, therefore would
be (103/(103+1))*100 i.e. 99.03%. For further details on the meaning and definition of statistics available in the
V$PGASTAT view, please refer to Oracle9i Database Performance Tuning Guide and Reference2.

V$SYSSTAT
The following new statistics have been added to V$SYSSTAT and V$SESSTAT views.

Statistics Name Description

work area memory allocated (KB)

Total amount of PGA memory dedicated to work areas allocated on
behalf of a given session (V$SESSTAT) or on the system
(V$SYSSTAT). This includes work areas allocated under both
MANUAL as well as AUTO mode. For DSS workload this should
represent most of the PGA memory.

work area executions - optimal size

The cumulative count of work areas that were executed in cache
mode. A sort area can be said to have an optimal size if it did not
need to spill to disk. Same for hash-join.

work area executions - one pass size

The cumulative count of work areas using the one pass size. One pass
is generally used for big work areas where spilling to disk cannot be
avoided.

work area executions - multipasses size

The cumulative count of work areas running in more than one pass.
This should be avoided and may be a symptom of a poorly tuned
system.

PROCESS/SESSION/QUERY LEVEL
V$SESSTAT
As described above.

V$PROCESS
The following four new columns have been added to the V$PROCESS view to report the PGA memory allocated and
used by an Oracle process.

Column Description

2 Chapter 14, Memory Configuration and Use,
http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/server.920/a96533/memory.htm#47603

Paper # 32706

Oracle9i Database

PGA_USED_MEM PGA memory currently used by the process.

PGA_ALLOC_MEM PGA memory currently allocated by the process. Includes free PGA memory not
yet released to the OS by the server process.

PGA_FREEABLE_MEM Part of the allocated PGA memory that can be freed.

PGA_MAX_MEM The maximum PGA memory ever allocated by the process.

V$SQL_WORKAREA
This view displays information about work areas used by SQL cursors. Each SQL statement stored in the shared pool
has one or more child cursors which are listed in the V$SQL dynamic view. The V$SQL_WORKAREA dynamic view
lists all work areas needed by these child cursors. It can be joined with V$SQLAREA on (address, hash_value) and
with V$SQL on (address, hash_value, child_number).

V$SQL_WORKAREA_ACTIVE
This view is structurally same as V$SQL_WORKAREA. But while the latter contains work area for all cached cursors,
V$SQL_WORKAREA_ACTIVE view only list those which are currently active.

TUNING PGA_AGGREGATE_TARGET

Oracle9i Release 2 assists administrators in deciding the optimal PGA size by providing two advice performance
views, V$PGA_TARGET_ADVICE and V$PGA_TARGET_ADVICE_HISTOGRAM. By examining these two
views, it is possible to determine how key PGA statistics will be impacted as the value of the
PGA_AGGREGATE_TARGET parameter is changed. In both these views, the values of
PGA_AGGREGATE_TARGET used for the prediction are derived from fractions and multiples of the current
value of that parameter, to assess possible higher and lower values. Oracle generates PGA advice performance views
by recording the workload history and then simulating this history for different values of
PGA_AGGREGATE_TARGET. The simulation process is performed continuously in the background by the global
memory manager.

The figure 12 below shows the content of V$PGA_TARGET_ADVICE view as displayed in Oracle Enterprise
Manager. The curve shows how the PGA “cache hit percentage” metric improves as the value of the configuration
parameter PGA_AGGREGATE_TARGET increases. The “over flow” zone of the curve refers to the values of
PGA_AGGREGATE_TARGET smaller than the minimum PGA requirement of the instance. If
PGA_AGGREGATE_TARGET is set within the over-allocation zone, the memory manager will over-allocate
memory and actual PGA memory consumed will be more than the limit set by the DBA. It is therefore meaningless to
set a value of PGA_AGGREGATE_TARGET in that zone.

Beyond the over-allocation zone, the value of the PGA cache hit percentage increases rapidly. This is due to an
increase in the number of work areas which run cache or one-pass and a decrease in the number of multi-pass
executions. At some point, somewhere around 40 MB on the given curve, there is an inflection in the curve which
corresponds to the point where most (probably all) work areas can run at worst one-pass. After this inflection, the
cache hit percentage keeps increasing but at a lower pace up to the point where it starts to taper off and shows only
slight improvement when PGA_AGGREGATE_TARGET is increased. In the above example, this happens when
PGA_AGGREGATE_TARGET reaches 80 MB where the cache hit ratio starts approaching close to 100%. The
given curve tells us that the current setting of PGA_AGGREGATE_TARGET (80MB) is optimal and no further
gains are likely if the amount of the PGA memory available to the instance is increased.

Paper # 32706

Oracle9i Database

Figure 12: PGA Advisory (Oracle Enterprise Manager)

CUSTOMER IMPLEMENTATION CASE STUDIES

In view of the manageability and performance benefits enumerated earlier, customers have been quick to adopt the
Automatic SQL Execution Memory management features. Following are some of the customers who have extensively
tested this feature and have successfully deployed it in their production environment.

Customer Name Business Description System/Environment Details
Colgate USA Consumer goods multi-national

(http://www.colgate.com)
3 TB Oracle9i Release 2 Data Warehouse
running on 24 CPU IBM Regatta p690 with 96
GB RAM, AIX 5.1

Talkline Mobile phone & services company
in Germany

• Sun E-10000 (20 CPUs, 8GB RAM)

Paper # 32706

Oracle9i Database

Paper # 32706

(http://www.talkline.de) • 4 x A5200 (72 x 18 GB disks), 1 x A3500
(18 x 9 GB disks), 340 MB/sec.
throughput

• DWH: 1/2 TB raw data, largest table
100 GB

Postbank A Germany based international
banking group
(http://www.postbank.de)

Oracle9i Release 2 RAC running on HP-UX

CONCLUSION
Memory is a critical system resource. Since memory access is many times faster than accessing data from disk,
effective utilization of memory is necessary for optimal system performance. Administrators, therefore, continuously
strive to tune memory related parameters to maximize system performance and ensure the most efficient use of
system memory. Oracle9i automates much of the tuning process and allows administrators to alter the instance
memory configuration dynamically. These features provide improved system performance, ensure optimal memory
utilization and help reduce the maintenance downtime.

	Example 1
	Example 2
	Size

