

Technical Comparison of Oracle
Database vs. IBM DB2 UDB:
Focus on Performance

An Oracle White Paper
February 2002

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 2

Technical Comparison of Oracle Database vs.
IBM DB2 UDB: Focus on Performance

EXECUTIVE OVERVIEW.. 4
INTRODUCTION... 4

Oracle9i is Oracle9i. What is IBM DB2?... 4
Key performance differentiators... 5

Concurrency Model.. 5
Support for clustered configurations... 6
Indexing capabilities .. 6
Partitioning options.. 7
Additional data warehousing capabilities .. 7
Intelligent advisories .. 7
Self-tuning capabilities... 7

TRANSACTION PROCESSING.. 7
Concurrency Model.. 8

Multi-version read consistency... 8
Non-escalating row-level locking... 9

Indexing capabilities .. 11
Index-organized tables .. 12
Clustered systems ... 12

Oracle9i Real Application Clusters.. 12
DB2 Shared nothing architecture ... 13
Performance for OLTP applications... 13
Performance for packaged applications.. 15

DATA WAREHOUSING AND DECISION SUPPORT..................... 17
Bitmap Indexes & Bitmap Join Indexes.. 17
Partitioning.. 18

Oracle’s partitioning options .. 19
DB2’s partitioning options ... 20

Merge... 20
Multi-table inserts.. 21

PERFORMANCE TUNING AND TOOLS .. 22

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 3

Intelligent advisories .. 23
Memory.. 23
MTTR Advisory... 23
Summary Advisor ... 23
Virtual Index Wizard... 23

Self-tuning memory management.. 24
SGA and Buffer cache .. 24
Automated SQL execution memory management 24

Automatic Segment Space Management .. 24
Self-tuning direct I/O management ... 25

CONCLUSION... 26

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 4

Technical Comparison of Oracle Database vs. IBM
DB2 UDB: Focus on Performance

EXECUTIVE OVERVIEW

Recent years have seen entire corporations and organizations being integrated
and streamlined, bringing everyone online -employees, business partners,
customers, and suppliers- to access and share the latest information. These
dramatic changes bring new challenges to databases: they must be able to
service unprecedented numbers of users, and at the same time ensure good and
predictable performance for a wide variety of concurrent applications, from
OLTP applications with high transaction volumes to large Data Warehousing
applications with complex queries.

This paper reviews the most significant differences between the market-leading
database management system, Oracle9i Database, and its competitive product,
IBM DB2 UDB V7.2, in the arena of performance and scalability.

INTRODUCTION

Oracle9i is Oracle9i. What is IBM DB2?

Even though product availability is not directly linked to performance, true
portability across a large variety of hardware and operating systems enables
users to seamlessly upgrade or change their hardware systems without having
to worry about changing, redesigning or rebuilding their applications. In other
words, portability helps preserve the initial investments in application software
and helps deliver performance consistency across multiple platforms.

Because Oracle9i Database is one single product, with a single code base ported
on a large selection of hardware and operating systems, it provides the same
support for performance features and tools across all platforms. But while IBM
promotes DB2 as one product, it is in fact a family of products, with different
code bases , that differ significantly from each other in terms of features and
tools.

For clarity and simplicity, this paper only considers DB2 UDB V7.2 EEE1.
Throughout this document, the term DB2 will refer to the DB2 UDB V7.2 EEE

1 DB2 UDB EEE is a superset of DB2 UDB EE: all features supported by DB2 UDB EE are supported by
DB2 UDB EEE; some of the DB2 UDB EEE features described in this paper, e.g., partitioning, are not

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 5

product and the terms Oracle and Oracle database will refer to the Oracle9i
Database product.

Key performance differentiators

The table and section below briefly describe the main differentiators between
Oracle and DB2 in the arena of performance and scalability. These features are
explained in more detail in the remaining sections of the document.

Feature Oracle9i DB2

Concurrency Model Multi-version read
consistency

Non-Escalating row-
level locking

No

Locks escalate

Clustered configurations Transparent scalability
with Real Application
Clusters

Rigid data partitioning
required with DB2 EEE

Indexing capabilities Wide variety of indexing
schemes

Only B-Tree and
dynamic bitmap indexes

Partitioning options Range, hash, list and
composite partitioning

Only hash partitioning

Additional data
warehousing capabilities

MERGE

Multi-table INSERT

Not supported

Not supported

Intelligent advisories Index, Summary,
Memory, MTTR

Index advisory only

Self-tuning capabilities Self-tuning memory,
free space, and I/O
management

No equivalent capabilities

Table 1: key differentiators

Concurrency Model

Oracle fully supports mixed workloads environments characterized by
simultaneous query and update activities. With Oracle9i Database, writers
never block readers and readers never block writers. Non-blocking multi-
version read consistency always provides users with consistent query results
while never imposing a performance penalty on concurrent update activity.

DB2 lacks Oracle’s powerful multi-version read consistency and forces users
to choose between accuracy and concurrency. This means that DB2 users

supported by DB2 EE.

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 6

must either block writers in order to ensure read consistency or accept
inaccurate results, i.e., dirty reads.

The basic architecture of Oracle is very efficient for managing large numbers of
transactions. The technical feature that makes this possible is Oracle’s patented
non-escalating row-level locking. All transaction processing applications reap
the benefits of Oracle’s technology. As more users are connected to the
application, an Oracle database can continue to deliver consistent performance
despite the increasing volume of transactions.

This efficient concurrency model is one of the reasons why, according to
database scalability experts Winter Corporation, all 10 of the 10 largest Unix
transaction processing databases2 run on Oracle. No other database even
comes close.

Due to the finite amount of memory structures available to track locking
information, DB2 requires row locks to escalate to table locks to minimize
resource usage when activity increases, leading to unnecessary contention and
decreased throughput.

Support for clustered configurations

Real Application Clusters is the Oracle9i Database option that supports
hardware clusters. It has been designed to provide full application
compatibility. All types of applications: custom OLTP, DSS, or packaged
applications such as the Oracle eBusiness Suite, can run unmodified when
deployed from single systems to clustered configurations: no redesign or code
changes are required; neither is explicit application segmentation or data
partitioning.

In contrast, existing DB2 databases running on single systems must be migrated
to be used with DB2 UDB EEE; this migration requires rigid data partitioning,
and expensive and complex additional development.

Indexing capabilities

Oracle supports a wide variety of indexing schemes tailored for different types
of operations and applications. In particular, Oracle supports static bitmap
indexes and bitmap join indexes, which benefit data warehousing applications by
providing dramatic response time improvements and substantial reduction of
space usage compared to other indexing techniques. Additionally, Oracle
supports global indexes across partitions, which are essential when using
partitioned tables in OLTP environments.

2 http://wintercorp.com/VLDB/2001_VLDB_Survey/winners/table11.html

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 7

DB2 only supports b-tree indexes3 and dynamic bitmap indexes. DB2 equi-
partitions indexes and tables, and does not support global indexes across
partitions.

Partitioning options

Oracle9i Database offers several partitioning methods designed for different
situations: range partitioning, hash partitioning, list partitioning, and composite
hash-range and range-list partitioning.

DB2 only provides support for hash partitioning.

Additional data warehousing capabilities

Oracle provides two additional features useful in data warehousing
environments, in particular during the Extraction, Transformation and Loading
(ETL) process. The multi-table INSERT statement allows users to insert rows
into multiple tables as part of a single DML statement, avoiding the use of
separate SQL statements for each table. The MERGE SQL statement provides
the ability to update or insert rows conditionally into a table or a view,
depending upon which is needed.

DB2 does not support multi-table inserts and does not support MERGE.

Intelligent advisories

Oracle offers a number of, intelligent advisories for performance tuning that
free the administrators from time-consuming tuning and diagnostics tasks and
allow them to simulate a variety of “what-if” scenarios: index advisory,
summary advisory, memory advisory, MTTR advisory, table/index usage
advisory.

DB2 only provides an index advisory.

Self-tuning capabilities

Oracle provides many self-tuning capabilities that dynamically adjust the
database parameters to take advantage of variations in the consumption of
system resources. These capabilities include self-tuning memory management,
automatic free-space management, and self-tuning IO management.

DB2 does not provide equivalent self-tuning capabilities.

TRANSACTION PROCESSING

Online transaction processing (OLTP) applications are characterized by very
large user populations concurrently accessing large volumes of data for short
and frequent insert or update transactions.

3 “DB2 is limited to the use of Btrees for conventional indexing”, p. 84, Database Report, Bloor Research,
2001

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 8

Such environments require support for high throughput, a choice between
several indexing strategies, and excellent data concurrency. The Oracle9i
Database provides unique features that make it the platform of choice for
addressing these requirements.

Concurrency Model

Oracle and DB2 greatly differ in their implementation of concurrency control.
The main differences are summarized in the table below and further explained
in the following sections.

Oracle9i DB2

Multi-version read consistency Not available

No read locks Requires read locks to avoid dirty
reads

No dirty reads Dirty reads if not using read locks

Non-escalating row-level locking Locks escalate

Readers don’t block writers Readers block writers

Writers don’t block readers Writers block readers

No deadlocks under load Deadlocks may be experienced
under load

Table 2: Concurrency Models

Multi-version read consistency

Database implementations differ in their ability to prevent well-known
phenomena encountered in multi-user environments:

• dirty, or uncommitted reads happen when a transaction can read changes
made to the database that have not yet been committed.

• non-repeatable reads occur when a transaction re-reads data it has
previously read and finds that another committed transaction has modified
or deleted the data.

• phantom reads happen when a transaction executes twice a query
returning a set of rows that satisfy a search condition, and finds that the
second query can retrieve additional rows which were not returned by the
first query, because other applications were able to insert rows that
satisfy the condition.

Oracle’s implementation of multi-version read consistency always provides
consistent and accurate results. When an update occurs in a transaction, the
original data values are recorded in the database's undo records. Rather than

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 9

locking information to prevent it from changing while being read, or to prevent
queries from reading changed but uncommitted information, Oracle uses the
current information in the undo records to construct a read-consistent view of a
table's data, and to ensure that a consistent version of the information can
always be returned to any user.

DB2 does not provide multi-version read consistency. Instead DB2 requires
applications either to use read locks, with various levels of isolation, or to
accept dirty reads. Read locks prevent data that is read from being changed by
concurrent transactions. Clearly, this implementation restricts the ability of the
system to properly service concurrent requests in environments involving a mix
of reads and writes. The only alternative users have is to build separate
workload environments. The result is that DB2 users always have to find
some compromise in their application design in order to get acceptable data
concurrency and accuracy. IBM admits to this fact in their own
documentation: “Because DB2 UDB requests an exclusive lock on behalf of the
application during an update, no other applications can read the row (except
when the UR [uncommitted read, meaning dirty read,] isolation level is used).
This can reduce concurrency in the system if there are a lot of applications
attempting to access the same data at the same time. To increase the
concurrency of the system, commit your transactions often, including read-only
transactions. If possible, reschedule the applications that compete for access to
the same table. Also, use Uncommitted Read [meaning dirty read] transactions
where read consistency is not an issue.”4

With Oracle, writers and readers never block each other. Oracle’s powerful
multi-version read consistency allows mixed workload environments to function
properly without incurring any performance penalty for the users.

For an example of how this affects application development, consider SAP. In
order to avoid the disastrous effects read locks could have on concurrency,
SAP has to compensate for DB2 dirty reads. This is done through additional
code implemented in the database-dependent layer of the SAP interface. In the
Oracle interface for SAP, nothing extra has to be done to ensure read
consistency since the database server takes care of it.

Non-escalating row-level locking

Row-level locks offer the finest granularity of lock management, and thus, the
highest degree of data concurrency. Row-level locking ensures that any user or
operation updating a row in a table will only lock that row, leaving all other
rows available for concurrent operations.

4 IBM DB2 Universal Database Porting Guide, Oracle to DB2 v7.1, version 3.0, p. 46, DB2 Technical
Enablement Services, IBM Toronto Lab, November 2000

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 10

Oracle uses row-level locking as the default concurrency model and stores
locking information within the actual rows themselves. By doing so, Oracle can
have as many row level locks as there are rows or index entries in the database,
providing unlimited data concurrency.

DB2 also supports row-level locking as the default concurrency model.
However, because it was not the initial default level of lock granularity in earlier
versions of the database, the late addition of row-level locking was made
possible only through the use of additional, separate memory structures called
lock lists. As for any memory structures, these lock lists have limited size and
thus impose a limitation on the maximum number of locks that can be
supported by the database.

As more users access the application and transaction volume increases, DB2
will escalate row level locks to table locks to conserve memory. This in turn
means that fewer users can access the data at the same time – users will have
to wait.

 “If a lock escalation is performed, from row to table, the escalation process
itself does not take much time; however, locking entire tables decreases
concurrency, and overall database performance may decrease for subsequent
accesses against the affected tables.”5

With DB2, “A more important side effect of lock escalation is the concurrency
impact on other applications. For example, if an application holds a share
table lock on table T1 due to a lock escalation…other applications will not be
able to update rows in T1.” 6

An article in DB2 Magazine states that “with … ERPs, lock escalation is one of
the biggest contributors to poor performance.”7 The article goes on to advise
turning off lock escalation. While this is an option for DB2 on OS/390, lock
escalation cannot be turned off for DB2 on Unix/Windows.

While the result of this lock escalation is that the total number of locks being
held is reduced, the likelihood of having two or more users waiting for data
locked by each other is greatly increased. Such unpleasant deadlock situations
are usually solved by aborting one or more of the concurrent users’
transactions.

 “As a result of different concurrency controls in Oracle and DB2 UDB, an
application ported directly from Oracle to DB2 UDB may experience deadlocks
that it did not have previously. As DB2 UDB acquires a share lock for readers,

5 P. 266, DB2 UDB V7.1 Performance Tuning Guide, IBM Redbooks
6 P. 47, IBM DB2 Porting Guide, November 2000.

7 DB2 Magazine http://www.db2mag.com/db_area/archives/1999/q2/99sp_yevich.shtml

“An application ported directly from Oracle to DB2
UDB may experience deadlocks that it did not

have previously”.
November 2000, IBM DB2 Porting Guide, page 47

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 11

updaters may be blocked where that was not the case using Oracle. A deadlock
occurs when two or more applications are waiting for each other but neither
can proceed because each has locks that are required by others. The only way
to resolve a deadlock is to roll back one of the applications.” 8

Oracle never escalates locks and, as a consequence, Oracle users never
experience deadlock situations due to lock escalation.

Indexing capabilities

Indexes are database structures that are created to provide a faster path to data.
Using indexes can dramatically reduce disk I/O operations, thus increasing the
performance of data retrieval.

Both Oracle and DB2 support traditional B-Tree indexing schemes, but Oracle
provides many additional indexing capabilities, suitable for a wider variety of
application scenarios:

Feature Oracle DB2

Reverse Key Indexes Yes -

Function-based Indexes Yes Partial

Dynamic Bitmap Indexes Yes Yes

Stored Compressed Bitmap Indexes Yes -

Bitmap Join Indexes Yes -

Index-organized Tables Yes -

Table 3: Indexing Capabilities

Oracle provides the ability to create reverse key indexes. A reverse key index,
compared to a standard index, reverses the bytes of each column indexed while
keeping the column order. Such an arrangement can help avoid performance
degradation when modifications to the index are concentrated on a small set of
leaf blocks. By reversing the keys of the index, the insertions become
distributed across all leaf nodes in the index.

DB2 does not support reverse key indexes.

With Oracle, indexes can also be created on functions of one or more columns
in the table being indexed. A function-based index pre-computes the value of the
function or expression and stores it in the index. A function-based index can be
created as either a B-tree or a bitmap index.

8 P. 47, IBM DB2 Porting Guide, November 2000.

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 12

With DB2’s generated column feature, an index can be created based on the
expression used to derive the value of the generated column. However, this
implementation is less efficient than Oracle’s function-based index because DB2
requires storage of the derived values in the table.

Finally, Oracle supports static bitmap indexes and bitmap join indexes. DB2
only supports dynamic bitmap indexes. These indexing schemes are explained
further in the data warehousing and decision support section.

Index-organized tables

Index-organized tables provide fast access to table data for queries involving
exact match and/or range search on the primary key because table rows are
stored in the primary key index. Use of index-organized tables reduces storage
requirements because the key columns are not duplicated in both the table and
the primary key index. It eliminates the additional storage required for ROWIDs,
which store the addresses of rows in ordinary tables and are used in
conventional indexes to link the index values and the row data. Index-organized
tables support full-table functionality, including ROWID pseudo-column, LOBs,
secondary indexes, range and hash partitioning, object support and parallel
query. It is also possible to create bitmap indexes on index-organized tables,
thereby allowing index-organized tables to be used as fact tables in data
warehousing environments.

DB2 does not support Index-organized tables. With DB2 it is possible to have
specified columns appended to the set of an index’s key columns, which may
improve the performance of some queries through index only access but does
not provide the storage efficiency of Index-organized tables since columns are
duplicated in both the table and the index.

Clustered systems

Clusters are groups of independent servers, or nodes, connected via a private
network (called a cluster interconnect). The nodes work collaboratively as a
single system. Clusters allow applications to scale beyond the limits imposed by
single node systems. Both Oracle and DB2 provide support for clustered
configurations but differ greatly in their architecture.

Oracle9i Real Application Clusters

Real Application Clusters (RAC) is the Oracle9i Database option that supports
hardware clusters.

Oracle9i Real Application Clusters adopts a shared disk approach. In a pure
shared disk database architecture, database files are logically shared among the
nodes of a loosely coupled system with each instance having access to all the
data.

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 13

Oracle9i Real Application Clusters uses the patented Cache FusionTM
architecture, a technology that utilizes the interconnected caches of all the
nodes in the cluster to satisfy database requests for any type of application
(OLTP, DSS, packaged applications). Query requests can now be satisfied both
by the local cache as well as any of the other caches. Update operations do not
require successive disk write and read operations for synchronization since the
local node can obtain the needed block directly from any of the other cluster
node’s database caches. Oracle9i Cache FusionTM exploits low latency cluster
interconnect protocols to directly ship needed data blocks from the remote
node’s cache to the local cache. This removes slow disk operations from the
critical path of inter-node synchronization. Expensive disk accesses are only
performed when none of the caches contain the necessary data and when an
update transaction is committed, requiring disk write guarantees. This
implementation effectively expands the working set of the database cache and
reduces disk I/O operations to dramatically speed up database operations.

DB2 Shared nothing architecture

DB2 adopts the shared nothing approach. In pure shared nothing architectures,
database files are partitioned among the instances running on the nodes of a
multi-computer system. Each instance or node has affinity with a distinct
subset of the data and all access to this data is performed exclusively by this
“owning” instance. In other words, a pure shared nothing system uses a
partitioned or restricted access scheme to divide the work among multiple
processing nodes. This only works well in environments where the data
ownership by nodes changes relatively infrequently. The typical reasons for
changes in ownership are either database reorganizations or node failures.

Parallel execution in a shared nothing system is directly based on the data
partitioning scheme. When the data is accurately partitioned, the system scales
in near linear fashion.

On a superficial level, a pure shared nothing system is similar to a distributed
database. A transaction executing on a given node must send messages to other
nodes that own the data being accessed. It must also coordinate the work done
on the other nodes to perform the required read/write activities. Such
messaging is commonly known as “function shipping”. However, shared
nothing databases are fundamentally different from distributed databases in that
they operate one physical database using one data dictionary.

Performance for OLTP applications

The difference in the architecture adopted in the two products has many
consequences in terms of performance and scalability, summarized in the table
below:

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 14

RAC DB2 EEE

No two-phase commit required Requires two-phase commit

Data cached in multiple nodes IPC for every cross-partition access

Single probe for data Multiple partition probes

Uniform load distribution Load skew likely

Table 4: Clustering

Two-phase commit

Any transaction that modifies data in more than one partition on a DB2 system
must use the two-phase commit protocol to insure the integrity of transactions
across multiple machines. DB2 transactions have to write the prepare records at
commit time, during the first phase of the two-phase commit, and can only
proceed to the second phase when the first phase has completed. This
increases the response time of the OLTP application.

In RAC, a commit only needs to wait for a log force on the node that is running
the transaction. If that transaction had accessed data modified by other nodes in
the cluster, these blocks are transferred using the high-speed interconnect
without incurring disk I/Os. RAC does require a log force of modifications
present in the block before transferring. However, even on an insert intensive
benchmark such as the SAP Sales and Distribution Benchmark, only a very
small percentage of these transfers are blocked by a log force (less than 5%).
This is because the log of modifications to a block is continuously forced to
disk in the background by the log writer well before it is needed by another
node.

Data Caching

RAC uses the global cache service (GCS) to ensure cache coherency. The
global cache service allows RAC to cache infrequently modified data in as many
nodes that need the data and have space in their caches. Further access to this
data can be performed at main-memory speeds.

DB2 systems, on the other hand, must use inter-process communication to
access data from another partition even if it has not been modified since the last
access.

Partition probes

DB2 equi-partitions the indexes and tables. This causes multiple partition probes
for queries that do not result in partition pruning. For example, if the employee
table is partitioned by employee number and there is an index on employee
name, a lookup of an employee by name will require DB2 to probe the employee

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 15

name index in all partitions. The total work performed to lookup the employee
by name grows with the number of partitions.

By contrast, RAC can execute the same query by accessing only the appropriate
index pages in the single B-Tree employee name index.

Load Skew

DB2 systems may suffer from load skew for two reasons. First, the underlying
data may not be evenly distributed in all partitions. This is especially true with
low cardinality data. Second, the data accesses may be skewed to a small set of
column values due to seasonal or daily trends even when the underlying data is
evenly distributed.

RAC does not suffer from load skew because there is no single node that owns
the data, all the nodes can access all the data.

Transaction Routing

It is possible to further improve performance on RAC by routing transactions to
a subset of the nodes in a cluster. This improves data affinity and reduces inter-
node communication. The routing can be performed easily through the use of
service names in the Oracle Net configuration.

Routing transactions by function is more cumbersome with DB2 because it
requires knowledge of the location of the data accessed by the transactions. It
is also less flexible to changes in load because executing the transactions on
more (or less) number of logical nodes without data redistribution will result in
sub-optimal performance.

In some situations, a RAC system can also be configured using appropriate
middleware to route requests based on the application's bind values. For
example, a mail server may route email connections based on the user's login.
For optimal effect, this requires that the underlying data also be partitioned
based on the bind value using range or list partitioning. This is not possible to
implement in DB2 because the user has no control over the placement of data
(DB2 supports only hash partitioning; range and list partitioning are not
supported).

Performance for packaged applications

Popular OLTP Applications such as those from Oracle, SAP, PeopleSoft or
Siebel, have thousands of tables and unique global indexes.

These applications require global unique indexes on non-primary key columns
for speedy data access as well as for ensuring data integrity. Without these
indexes, mission-critical application data can be corrupted, duplicated or lost.

Applications also do not partition their data accesses perfectly – it is not feasible
to find partitioning keys for application tables that yield a high proportion of

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 16

“local” data accesses, where the requirements of a query can be satisfied
exclusively by the contents of a single partition of data. Non-local data
accesses incur the unacceptable performance overhead of frequent distributed
transactions. With non-collocated data access, “the data used by the
transaction requires inter-partition communication in order to move the data
across partitions. Things are even worse if this is an update transaction
involving 2 or more partitions, which would add the 2-phase commit processing
overhead.”9

Most significant queries in SAP, PeopleSoft or the Oracle eBusiness Suite join
multiple tables, and different queries use different alternate keys in the join
predicates. To deploy a PeopleSoft or SAP application to a shared nothing
database like DB2 would be a Herculean undertaking.

In contrast, packaged applications need not be re-written to run and scale
against the Oracle9i Real Application Clusters architecture. As for any other
application developed for Oracle on a single system, they require no porting or
particular tuning effort to run on Oracle 9i Real Application Clusters: “RAC
provides […] virtually unlimited scalability, […] it supports all customers’
applications without modification. Applications can benefit from the
availability and scalability features of Oracle9i RAC even if they have not been
designed specifically for RAC.”10

2 nodes 4 nodes
0

1000

2000

3000

4000

5000

U
sr

es

2 nodes 4 nodes

Figure 1: Oracle eBusiness Suite scalability on 9i RAC

This was clearly demonstrated using the Oracle Applications Standard
Benchmark. Two benchmarks were run, respectively on two node and a four
node cluster configurations, using the same base system. Results reported
show an increase in the number of supported users from 2296 on the two node
configuration to 4368 on the four node configuration, representing a scalability
factor of 1.9.

9 DB2 UDB EEE as an OLTP Database, Gene Kligerman, DB2 and Business Intelligence Technical
Conference, Las Vegas, Nevada, October 16-20, 2000
10 P.3, Implementing Oracle9i RAC with Linux on IBM @server xSeries servers, IBM Redpaper

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 17

1 node 2 nodes 4 nodes
0

0.5

1

1.5

2

2.5

3

3.5

S
ca

la
b

ili
ty

 f
ac

to
r

1 node 2 nodes 4 nodes

Figure 2: SAP scalability on 9i RAC

Similarly, initial performance tests conducted with the SAP R/3 Sales and
Distribution (SD) application demonstrated an increase of performance by a
factor of 1.8 when going from a one-node configuration to a two-node
configuration, and by a factor of 1.8 when going from a two to a four-node
configuration.

In both cases no particular application or database redesign was required.

According to the presentation, 'DB2 EEE as an OLTP Database', authored by
IBM’s Gene Kligerman and delivered at the International DB2 User’s Group
conference in Orlando, May, 2001, the performance of DB2 actually worsens
as nodes are added in an OLTP environment. Kligerman says, "When an
environment is simulated where all transactions are uniformly distributed, the
performance with 2 and 4 nodes is worse than with a single node."

DATA WAREHOUSING AND DECISION SUPPORT

Data warehouses are very large databases specifically designed for query and
data analysis. They should be optimized to perform well for a wide variety of
long-running ad-hoc queries.

Such environments require adequate support for query rewrite capabilities,
efficient indexing capabilities, wide selection of partitioning strategies, and
extended support for parallel execution. Here again, Oracle9i Database provides
unique features that fully address these requirements.

Bitmap Indexes & Bitmap Join Indexes

Oracle supports static bitmap indexes and static bitmap join indexes.

A bitmap index uses a bitmap (or bit vector) for each key value instead of a list
of ROWIDs. Each bit in the bitmap corresponds to a row in the table.

Bitmap representation can save a lot of space over lists of ROWIDs, especially
for low cardinality data. Bitmap indexes lend themselves to fast boolean

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 18

operations for combining bitmaps from different index entries. Bitmap indexing
efficiently merges indexes that correspond to several conditions in a WHERE
clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically.

A bitmap join index is a bitmap index for the join of two or more tables. A
bitmap join index can be used to avoid actual joins of tables, or to greatly reduce
the volume of data that must be joined, by performing restrictions in advance.
Queries using bitmap join indexes can be sped up via bit-wise operations.

Bitmap Join indexes which contain multiple dimension tables can eliminate bit-
wise operations which are necessary in the star transformation with bitmap
indexes on single tables. Performance measurements performed under various
types of star queries demonstrate tremendous response time improvements
when queries use bitmap join indexes.

DB2 only supports dynamic bitmap indexes. Dynamic bitmap indexes are
created at run time by taking the ROWID from existing regular indexes and
creating a bitmap out of all the ROWIDs either by hashing or sorting.

For this reason, dynamic bitmap indexes do not provide the same query
performance as Oracle’s real bitmap indexes. While dynamic bitmap indexes
can be used in “star transformation” strategies for executing star query, these
indexes are still based upon b-tree indexes and there are considerable IO costs
associated with accessing the much-larger b-tree indexes.11

Moreover, databases with dynamic bitmap indexes do not receive any of the
space savings or index-creation time savings obtained by Oracle’s true bitmap
indexes.

Partitioning

Partitioning allows large database structures (tables, indexes, etc.) to be
decomposed into smaller and more manageable pieces. Partitioning can help
improve performance with the technique known as partition pruning. Partition
pruning enables operations to be performed only on those partitions containing
the data that is needed. Partitions that do not contain any data required by the
operation are eliminated from the search. This technique dramatically reduces
the amount of data retrieved from disk and shortens the use of processing time,
improving query performance and resource utilization.

Partitioning can also improve the performance of multi-table joins, by using a
technique known as partition-wise joins. Partition-wise joins can be applied
when two tables are being joined together, and both of these tables are
partitioned on the join key. Partition-wise joins break a large join into smaller

11 Key Data Warehousing Features in Oracle9i: A Comparative Performance Analysis, An Oracle White
Paper, September 2001

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 19

joins that occur between each of the partitions, completing the overall join in
less time. This offers significant performance benefits both for serial and
parallel execution.

Finally, by enabling the parallel execution of DML statements, partitioning helps
reduce response time for data-intensive operations on large databases typically
associated with decision support systems and data warehouses.

Oracle’s partitioning options

Oracle9i Database offers several partitioning methods designed to be more
appropriate for various particular situations12:

• Range partitioning uses ranges of column values to map rows to
partitions. Partitioning by range is particularly well suited for historical
databases. Range partitioning is also the ideal partitioning method to
support 'rolling window' operations in a data warehouse.

• Hash partitioning uses a hash function on the partitioning columns to
stripe data into partitions. Hash partitioning is an effective means of
evenly distributing data.

• List partitioning allows users to have explicit control over how rows map
to partitions. This is done by specifying a list of discrete values for the
partitioning column in the description for each partition.

• In addition, Oracle supports range-hash and range-list composite
partitioning.

Oracle also provides three types of partitioned indexes:

• A local index is an index on a partitioned table that is partitioned using the
exact same partition strategy as the underlying partitioned table. Each
partition of a local index corresponds to one and only one partition of the
underlying table.

• A global partitioned index is an index on a partitioned or non-partitioned
table that is partitioned using a different partitioning-key from the table.

• A global non-partitioned index is essentially identical to an index on a
non-partitioned table. The index structure is not partitioned.

Oracle allows all possible combinations of partitioned and non-partitioned
indexes and tables: a partitioned table can have partitioned and non-partitioned
indexes, and a non-partitioned table can have partitioned and non-partitioned
indexes.

12 For more information about Oracle9i ‘s partitioning options, see Oracle9i Partitioning, Hermann Baer,
Technical White paper, Oracle Open World 2001 Berlin

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 20

DB2’s partitioning options

The table below summarizes the differences between Oracle and DB2 with
regard to the partitioning options that each product supports:

Feature Oracle DB2

Range partitioning Yes -

List partitioning Yes -

Hash partitioning Yes Yes

Composite partitioning Yes -

Local index Yes Yes

Global partitioned index Yes -

Global non-partitioned index Yes -

Table 5: Partitioning options

DB2 only supports the hash partitioning method, which has considerable
limitations and weaknesses when compared to Oracle’s partitioning capabilities.

Unlike range or list partitioning, hash partitioning does not allow typical queries
to take advantage of partition pruning. By supporting more partitioning options
for tables as well as indexes Oracle is able to prune partitions in more queries.

By only supporting hash partitioning, DB2 does not allow for ‘rolling window’
support. With this process, a data warehouse is periodically kept up to date by
loading new data and purging old data in order to always keep the most recent
data online. DB2’s hash partitioning scheme requires data in all partitions to be
redistributed, therefore increasing the time required to load new data and also
decreasing data availability as the table is locked during the data redistribution
process.

Finally, DB2 requires equi-partitioning between tables and indexes, meaning that
global indexes, partitioned or non-partitioned, cannot be created. This is a
major problem in OLTP environments where global indexes are commonly used
to offer efficient access to any individual record. With DB2, application
designers have no flexibility when defining their indexing strategy in partitioned
configurations.

Merge

The MERGE statement is a new SQL statement that provides the ability to
update or insert rows conditionally into a table or a view, depending upon which
is needed, reducing the number of application statements and application
complexity. This statement is a convenient way to combine at least two

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 21

operations, avoiding the need to use multiple INSERT and UPDATE DML
statements.

The MERGE statement can be used to select rows from one table for update or
insertion into another table. Such operations are frequently used in a number of
data warehousing applications where tables need to be periodically refreshed
with new data arriving from on-line systems. This new data might contain
changes to the existing rows of the warehouse table or might introduce a new
row altogether. The MERGE statement typically addresses these types of
situations.

MERGE brings significant performance improvement due to the optimization of
execution and the reduction of scan and join operations compared to what
would be performed using an equivalent sequence of DML statements.13

DB2 does not support an equivalent of the MERGE statement. Without
MERGE, these operations can only be expressed as a sequence of INSERT and
UPDATE statements. This approach suffers from deficiencies in performance
and usability.

Multi-table inserts

Multi-table allows data to be inserted into more than one table using a single
SQL statement, which is more efficient than using multiple, separate SQL
statements for each table.

This feature is very useful in data warehousing systems, where data is
transferred from one or more operational data sources to a set of target tables.
Multi-table inserts extends the scope of the INSERT . . . SELECT statement to
insert rows into multiple tables as part of a single DML statement.

This new feature brings significant performance improvement14 due to
optimization of execution and reduction of scan operations on the source data.
No materialization in temporary tables is required and source data is scanned
once for the entire operation instead of once for each target table with multiple
statements.

Multi-table inserts make SQL more useful for data transformations and
conditional handling and allow faster loading and transformations of large
volumes of data.

DB2 does not support multi-table inserts, meaning that similar operations can
only be expressed as a sequence of INSERT statements, requiring more scan
operations on the source data.

13 Performance and Scalability in DSS environment with Oracle9i , An Oracle Technical White Paper, April
2201
14 Performance and Scalability in DSS environment with Oracle9i , An Oracle Technical White Paper, April
2201

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 22

PERFORMANCE TUNING AND TOOLS

Oracle and DB2 differ greatly in terms of diagnostics and tuning capabilities.

With Oracle9i Enterprise manager, users can quickly find which SQL statement
is causing a performance problem, for example using the Top SQL capabilities.
Then they can use SQL Analyze, the Index Tuning Wizard, and the Virtual
Index Wizard to tune the statement and data access paths.

DB2 has no easy way of determining Problem SQL (using trace is the only
way) and does not provide a tool to tune SQL by rewriting it

DB2, unlike Oracle, does not have a report that tells users which objects have
statistics and when these statistics were generated. There is no easy way to
find objects that need optimizer statistics.

In general, DB2 requires administrators to know a lot about the database. For
example, to perform real time monitoring, DB2’s Control Center provides
administrators with a lot of metrics but without any precision about which ones
are important indicators of the overall performance or health of the system.
When confronted with a vague problem like "system is slow" the DB2
administrator has to know where to look and poke around to find the cause of
the problem.

Oracle on the other hand guides the administrator via advice, help and drill-
downs through a process of analyzing the cause of the problem. Oracle also
provides more problem resolution capabilities, such as the advisors.

The following table and sections summarize the unique features provided by
Oracle that enhance the information that can be used to tune databases, and help
automate the tuning process. The absence of such features in DB2 requires
administrators to use empirical approaches and manual interventions to tune the
performance of the database.

 Oracle9i DB2

Intelligent Advisories Memory Advisors

MTTR Advisor

Summary Advisor

Virtual Index Wizard

No equivalent features

Self-tuning capabilities Self-tuning memory
management

Automatic free space
management

Self-tuning direct I/O
management

No equivalent features

Table 6: advisories and self-tuning

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 23

Intelligent advisories

Memory

The System Global Area (SGA) is the group of shared memory structures that
contain data and control information for an Oracle database instance. Program
Global Areas (PGA) are private memory regions that contain data and control
information specific to each server process. The sizes of these memory caches
are configurable using initialization configuration parameters. Oracle provides a
series of memory advisors that help administrators determine the optimal values
for these configuration parameters.

The buffer cache size advisory mechanism allows administrators to size the
buffer cache optimally by predicting the number of physical reads for different
potential buffer cache sizes. The shared pool advisory mechanism displays
information about estimated parse time savings for different sizes of the shared
pool. The PGA target advisory helps administrators determine how key PGA
statistics will be impacted if the overall amount of memory allocated to SQL
working areas varies.

MTTR Advisory

Mean Time to Recover (MTTR) defines the desired amount of time required for
Oracle to perform instance or media recovery on the database. The MTTR
advisory helps administrators choose the optimal value by predicting the number
of physical I/Os for different simulated MTTR values.

Summary Advisor

Oracle’s summary advisor is a collection of functions and procedures that
provide analysis and advisory capabilities for materialized views, based on
schema characteristics and previous workload history. These functions and
procedures help users select from among the many materialized views that are
possible in their schema.

In particular, the summary advisor can be used to estimate the size of a
materialized view, recommend a materialized view, recommend materialized
views based on collected workload information and report actual utilization of
materialized views based on collected workload.

Virtual Index Wizard

The Virtual Index Wizard allows users to test and understand how a new index
will affect SQL performance. Users can define an index and then without
actually creating the index, understand how this index would affect the
execution plan for an individual SQL statement.

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 24

Self-tuning memory management

SGA and Buffer cache

Dynamic SGA allows Oracle to set, at run time, limits on how much virtual
memory Oracle will use for the SGA. Oracle can change its SGA configuration
while the instance is running and both the buffer cache and the SGA pools can
grow and shrink at runtime according to an internal, Oracle-managed policy.

Automated SQL execution memory management

Oracle provides an automated mechanism for dynamically allocating runtime
memory to each query. Runtime memory is the memory region which is
allocated during query execution for purposes such as sorting and hashing. In
many data-warehouse environments, 70% or more of the data warehouse
server’s physical memory may be allocated for runtime memory.

This feature allows database administrators to specify the policy for sizing work
areas. In automatic mode, working areas used by memory-intensive operators
can be automatically and dynamically adjusted to compensate for low or high
memory usage.

Automated SQL execution memory management offers several performance
and scalability benefits for decision support workloads or mixed workloads with
complex queries, that is, queries where a large portion of the runtime area is
dedicated to working areas used by some memory intensive row sources such
as sorts or hash-joins. The overall system performance is maximized and the
available memory is allocated more efficiently among queries to optimize both
throughput and response time. In particular, gains from improved use of
memory translate to better throughput at high load.

Automatic Segment Space Management

With Oracle, it is possible to choose how free space can be managed inside
database segments. With the automatic mode, the segment free/used space is
tracked using bitmaps. A bitmap, in this case, is a map that describes the status
of each data block within a segment with respect to the amount of space in the
block available for inserting rows. As more or less space becomes available in a
data block, its new state is reflected in the bitmap. Bitmaps allow Oracle to
manage free space more automatically, and thus, this form of space
management is called automatic segment-space management.

Bitmaps provide a simple and efficient way of managing segment space,
optimizing space utilization, and providing better run-time adjustment to
variations in concurrent access, and better multi-instance behavior in terms of
performance/space utilization.

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 25

Self-tuning direct I/O management

Direct I/O involves transferring data blocks to and from the user process
private memory directly, without involving the database’s buffer
cache. This feature improves performance by avoiding unnecessary pre-
fetches, and by reserving I/O for the processes that can use them. Direct read
uses a read ahead scheme to pre-fetch extents so that when the data layer
clients need to access a requested block from disk, it would have been already
pre-fetched.

The self-tuning direct IO feature in Oracle enables the server to dynamically
adjust the number of direct reads based on the nature of the query, ensuring the
optimal use of available bandwidth.

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance Page 26

CONCLUSION

Oracle has a long history of bringing to market the best performing and most
scalable database products.

Its latest release, Oracle9i Database, builds on years of technical innovation and
further extends the Oracle leadership by providing new features and
improvements that allow all types of applications to perform and scale to
exceptional standards.

Technical comparison of Oracle vs. IBM DB2 UDB: Focus on performance

February 2002

Author: Hervé Lejeune

Contributing Authors: Jenny Tsai, Valerie Kane, Vineet Buch, Bill Kehoe, Sashikanth Chandrasekaran, Ray Glasstone

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

www.oracle.com

Oracle Corporation provides the software

that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various

product and service names referenced herein may be trademarks

of Oracle Corporation. All other product and service names

mentioned may be trademarks of their respective owners.

Copyright © 2002 Oracle Corporation

All rights reserved.

