
Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

OPTIMAL STORAGE CONFIGURATION MADE EASY

Juan Loaiza, Oracle Corporation

COMPLEXITY
Configuring storage subsystems for the Oracle database is an unnecessarily complex process. In the conventional
methodology, a storage configuration is custom designed for each site based on detailed knowledge of the
application. This methodology assigns a specific load to various subsets of the database such as log files, rollback
segments, index tablespaces, data tablespaces, etc. and assigns disks to these subsets based on their load profile.
Many tradeoffs must be made when designing a storage configuration using this methodology. If an IO estimate or
assignment is incorrect then performance can suffer. This methodology also requires ongoing load balancing as the
database grows and the application is modified.
Storage configuration does not have to be this complicated.
A simple, efficient, and highly available storage configuration is possible. The basic idea of this configuration is to
make extensive use of striping across large sets of disks using a methodology that we will describe later. To achieve
high availability the disks should be mirrored. We call this methodology S.A.M.E. SAME stands for Stripe and
Mirror Everything.
The SAME configuration produces close to optimal performance for ALL workloads: OLTP, Warehouse, and Batch.
We believe that the SAME configuration will become the predominant configuration for Oracle databases. Oracle is
working with leading storage vendors to optimize and automate this methodology.
This SAME methodology is based on careful analysis of current and future storage technology, combined with a
thorough understanding of the performance and availability requirements of the Oracle database. This paper
describes the thinking and reasoning behind the SAME methodology. An implementation of the ideas described in
this paper must take into account the capabilities and limitations of the chosen storage management products. A
companion paper discusses work that was jointly performed by Oracle, Veritas, and EMC to test and document a
specific implementation of the SAME methodology. That paper serves as a cookbook for implementing the SAME
methodology using the Veritas VxVM volume manager and the EMC Symmetrix. That paper can be found at
http://www.veritas.com/oracle or http://technet.oracle.com/deploy/availability/listing.htm#Collateral.

DISK BASICS AND TRENDS
The SAME configuration is designed to achieve the best possible utilization of the disk drives in a storage
configuration. SAME does not address issues of connectivity between the host and the drives. In practice, disk
drives are usually the bottleneck for random operations but connectivity is sometimes the bottleneck for sequential
throughput. SAME optimizes for both random access and sequential throughput. Since the SAME methodology
does not require making a tradeoff between access rate and throughput, it works well even if connectivity limits the
maximum throughput to less than what the disk drives can deliver.
The primary goal of the SAME methodology is to optimize disk utilization. Therefore, it is important to understand
the basic characteristics of disks and how disk technology is evolving. This section describes some disk drive basics
and trends.
Disk drives have a few basic properties that control and limit their performance. A typical disk on the market today
has these properties:

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

Capacity 35G to 75G, soon 100G to 200G drives will be available.
Rotation Speed 10000 RPM = 3 millisecond average rotation delay
Seek Time 1 millisecond to 11 millisecond depending on distance seeked
Transfer Rate Varies by location -- 12 MB/sec for the inside tracks, 20 MB/sec for the outside tracks

There are a few clear trends that are driving the disk and storage industries. These are summarized in the following
table:

Trend Implication
Disk Capacity is increasingly rapidly Bigger databases on fewer disk drives
CPU speed is increasing rapidly More IOs issued per second per CPU
RAM capacity is increasing slower than disk capacity Cache size will grow smaller relative to disk storage
Disk performance is increasing slowly Performance bottlenecks will increase

Fewer drives, more IOs per second, and modest disk performance increases will cause database performance to
become increasingly disk limited. It will be commonplace to configure many more disks for a database than are
required to hold the database data. The extra disks will be deployed purely for the extra throughput they provide, not
the storage capacity. This adds to the expense of deploying a high performance database. Therefore it is imperative
that the disk configuration chosen use all available disk bandwidth.

OPTIMIZING DISK BANDWIDTH
To use all available disk bandwidth we need to address two issues. One is how to use all the available disks. The
other is how to make most effective use of each disk. We will discuss these issues in turn.

USING ALL AVAILABLE DISKS

To use all available disks the data to be accessed must be spread across as many disks as possible. All disks in the
disk farm should have roughly equivalent utilization. Any disk that is used more than the other disks will become a
bottleneck to performance.
One way to spread data across many disks is to create roughly one database file per disk and use careful segment
allocation and partitioning at the database level to spread the database tables across these files. While this can be
done successfully it is a very tedious and customized process.
A more practical method is to make extensive use of volume level striping across disk drives. Modern volume
managers can stripe across many tens or hundreds of disks while adding very little overhead to IO operations.
An extra benefit of using a volume manager to spread access across disks is that database capabilities such as
partitioning can be focused on increasing database level performance and availability instead of spreading load across
disks. For example, partitioning can be used to isolate recent data from historical data.

OPTIMIZING SINGLE DISK SEQUENTIAL PERFORMANCE

Many people think that optimizing sequential throughput requires scanning sequentially through an entire disk or a
large portion of a disk. This is not true.
To optimize sequential throughput it is only necessary to sequentially scan enough data that the time it takes to
position the disk head to the data is a small percentage of the time to transfer the data. This is a key observation. We
only need to make sure that

Transfer time > 5 * positioning time

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

to achieve high sequential throughput. For example, 100 random reads of 10 megabytes each are almost as efficient
as a single scan of 1000 megabytes of data.
The following table shows the relative overhead of positioning for various transfer sizes:

IO Size Positioning Time Transfer Time % of Time Transferring Data
16K 10ms 1ms 10%
64K 10ms 3ms 23%
256K 10ms 12ms 55%
1M 10ms 50ms 83%
2M 10ms 100ms 91%

From this table we can see that a sequential transfer that is 1 megabyte or larger achieves high throughput and
efficiency. Larger transfers than this produce modest improvements. Therefore our goal should be to ensure that
sequential operations access at least a megabyte of sequential data. Smaller sequential accesses are much less
efficient. Larger sequential accesses improve performance by only a small factor.

VARIABLE TRANSFER RATE

The transfer rate for a disk drive is not the same for all portions of a disk The outer sectors of a disk drive move by
the disk head faster than the inner sectors leading to a faster transfer rate for the outer sectors. This is simply because
of the circular shape of a disk drive.
The outside portions of a disk drive also have more area than the inside portions. This means that the outside
portions of a disk drive hold more data than the inside portions. Typically more than 60% of the capacity of the disk
is on the outside half of the disk.
The following table summarizes the transfer rate at various regions of a typical disk drive based on the percentage of
capacity at that region. Thus it combines these two factors to show the achieved transfer rates for user data stored on
the drive.

Position on Disk (measured in terms of capacity) Transfer Rate at this Position (MB/sec)
Outer Edge 22
Outer Quarter 21
Mid Point 19
Inner Quarter 16
Inner Edge 11

What we can conclude from this table is that the transfer rate of a disk drives varies by a factor of two from the inner
edge of the drive to the outer edge. Therefore it is beneficial to place frequently accessed data toward the outer edge
of a disk drive. Note that most of the performance drop occurs in the inner most tracks of the disk. Therefore, a
fine level of positioning is not needed. If frequently used data is placed randomly on the outer half of a disk drive,
then sequential access to that data achieves over 90% of the best possible throughput. Thus, placing most frequently
accessed data towards the outside half of a disk, and less frequently accessed data towards the inside half suffices to
achieve close to optimal sequential access.

OPTIMIZING RANDOM ACCESS

To optimize random access on a disk drive it helps to limit the length that the disk head moves (seeks) between data
accesses.

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

A typical disk drive today has a minimum seek time of approximately 1ms for seeking to the next track, and a
maximum seek time of approximately 11ms for seeking the entire width of the disk. The seek time varies roughly
linearly between these values based on the length of the seek. If seeks are confined to a region of a disk, then to seek
at random within that region takes on average one third of the time to seek from one end of the region to the other.
So to seek at random within the entire drive takes roughly 4ms.
To read a block of data, the disk head must seek to the correct track and then must wait for the data to rotate to
below the disk head. For a 10000 RPM drive the average rotation latency is 3ms. Therefore, for small seek distances
the time to position the disk head is dominated by the rotation delay (1ms to seek, 3ms to rotate). This means that
positioning data at a very fine level to reduce seek time does not help much. It is enough to position data that is
accessed frequently roughly in the same half or quarter of a disk drive.
Also recall that disk drives hold more data towards the outer edge of the drive. This implies that to seek the same
distance measured in megabytes towards the outer edge of a disk is faster than towards the inner edge of a disk.
Thus we should prefer to place more frequently accessed data towards the outer portions of disk drives to reduce
seek distance between frequently accessed blocks.
The following table summarizes the effect of confining seek distance to the outer portions of a disk drive. This table
displays the time it takes to seek within a region of the disk The idea of the table is to calculate the average read time
and space used if we limited ourselves to using only the outside part of the disk. This will give us a calculation of the
maximum benefit we can get by placing data carefully on the disk. For example, we can see in the table that if only
the outer 60% of the disk drive is used, the average read time is 5.7ms.

Percent of Disk Used (in
distance from outer edge)

Average Seek Distance
with Region

Percent of Disk Space
Used by Region

Average Read Time
within Region (seek plus
rotation)

25% 8% 33% 4.8ms
50% 17% 60% 5.7ms
75% 25% 85% 6.5ms
100% 33% 100% 7.3ms

We can conclude from this table that placing frequently accessed data towards the outside half of a disk achieves
most of the performance benefit that can be achieved by positioning data to reduce seek time. Because the rotation
latency dominates the total access time when the seek distance is very small, placing data at a very fine level within a
disk achieves little extra performance gain. The read time for a minimum length seek access is 4ms. The average read
time for a random read within the outer half (by capacity) of a disk drive is approximately 5.3 ms.

SUMMARY OF OPTIMIZING DISK BANDWIDTH

In summary, to optimize disk bandwidth we should:

• Stripe data to equalize the workload across disks and eliminate hotspots

• Stripe data to enable many disks to serve requests for any subset of data

• Ensure that sequential access occurs in at least 1 megabyte units to achieve high sequential bandwidth

• Place frequently used data on the outer half of disks to provide the fastest transfer rate

• Place frequently used data on the outer half of disks to minimize seek overhead

These recommendations will change slowly as disk technology evolves since they do not depend on factors that are
increasing rapidly. The primary trend to be aware of is that since transfer speed is increasing faster than seek rate, the
minimum unit of sequential access should increase with time.

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

THE ORACLE IO WORKLOAD
The Oracle IO workload is very complex.
Oracle has many file types (data, log, temp, archive, undo, system, control, backup, etc.) and many operation types
(scan, lookup, load, insert, create index, join, LOB, sort, hash, backup, recovery, batch write, etc.). Understanding the
IO workload to each file type for each operation and its relative importance is extremely difficult.
The Oracle IO workload is also application dependent. Like an Operating System, the Oracle Database acts on behalf
of an application. The workload for an OLTP application is different from a warehousing application. The workload
for a batch job is different from an online user. The hit rate of the buffer cache varies by application. The tables,
indexes, and queries in a database are totally application dependent.
Because of this complexity, designing an efficient workload based storage configuration is extremely difficult. The
SAME configuration completely avoids getting into this level of detail. It is not necessary since the underlying disk
technology is independent of this detail. SAME does not optimize for a specific workload. Instead, it spreads the IO
load across the disks and makes sure each of the disks is utilized efficiently. There are just a few key attributes of the
Oracle workload that must be understood to see how SAME accomplishes this feat. This section describes these
attributes.

SEQUENTIAL IO IS TREATED SPECIALLY BY ORACLE

Oracle treats sequential IO specially. Sequential IO occurs for table scans, direct loads, logging, backups, sorts, etc.
Oracle recognizes when one of these operations is occurring and issues large IO operations that span block
boundaries. The size of the IO operation issued is controlled by parameters such as db_file_multiblock_read_count.
Recall that, to achieve high sequential disk bandwidth, it is necessary to ensure that sequential access to the disk drive
occurs in at least one megabyte units. Many IO subsystems can detect a pattern of sequential access and will perform
read-ahead using large IO operations. However, detection of sequential access takes time. The best way to ensure
that large IO operations occur at the disk drive is to issue large IOs at the Oracle level and ensure that these IOs are
not broken up between Oracle and the disk. To achieve this, parameters such as db_file_multiblock_read_count
should be set to one megabyte, stripe widths should be set to one megabyte, and OS IO size limits should be set to at
least one megabyte.

DIRECT READ AND WRITE OPERATIONS PERFORM READ AHEAD

Oracle can perform large scan or load operations directly to disk, bypassing the Oracle buffer cache. These are
performed for parallel table scans, index creation, direct loads, sorts, etc. This type of operation is termed direct IOs.
For direct IOs, Oracle will issue multiple asynchronous IO operations. This is sometimes called asynchronous read
ahead or double buffering. The goal of these operations is to achieve maximum disk throughput so that the
operation becomes CPU bound instead of IO bound.
To achieve maximum throughput, it is best if each of these IO operations accesses a different disk. Accessing
separate disks allows the scan or load operation to use the bandwidth of multiple disks. This implies that the stripe
size chosen should be less than or equal to the IO size.

PARALLEL EXECUTION

Oracle can automatically parallelise many operations. The operations that can be parallelised include scan, sort, join,
hash, load, create index, etc. A parallel operation can use the full execution power of all the CPUs on the host. On a
large multiprocessor or cluster, the IO rate that is generated by a parallel scan can reach many gigabytes per second.
The most important point to understand about parallel execution is that it can focus intense IO activity on any subset
of the database. The chosen table, index, or partition receives the aggregate CPU power of the host system. If very
high IO bandwidth is not available for the subset, then parallel execution will not scale. This implies that any subset
of the database must be spread across many disks since we cannot predetermine which subset of the database will
have a parallel operation invoked on it.

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

Many databases are configured to have subsets of data that are spread across just one, or a small number of disks.
This storage configuration eliminates the possibility of executing a fast parallel operation on the subset of data.
Often, administrators are not aware that parallelism is being limited when the storage configuration is designed. This
is a terrible waste of one of the most powerful features of the Oracle database.
The most extreme case of IO parallelism occurs in the parallel nested loops join operation. In this operation each
CPU can issue tens to hundreds of random IO operations in parallel. For a large multiprocessor, this can result in
hundreds of random IOs issued in parallel. If the data subset being joined is not spread across very many disks, the
storage subsystem will bottleneck the performance of the join operation.
To ensure that parallelism is not constrained by the IO configuration, all subsets of database data should be spread
across as many disks as possible. For best performance, all data subsets should be spread across every available disk.
This ensures that performance is limited by the total disk farm, not by a sub-optimal choice that was made when the
storage subsystem was configured.

LOG FILES

It is generally more efficient and flexible to parallelise IO operations using parallel execution at the Oracle level than
using small stripe widths at the storage level. However, online log file writes cannot be parallelised at the Oracle
level. They must be parallelised at the storage system level. If an online log file is located on a single disk, then
operations that make changes very rapidly such as parallel updates, parallel index creations, parallel loads, etc. may
become bottlenecked on the log disk. Therefore the online log file should be spread across multiple disks using
striping.
In general it is easiest and most efficient to stripe the logs across all the disks just like the data files. Sometimes
people worry that placing the log files on the same disks as the data files will cause interference between data accesses
and log writes. This is because the disk head may have to move to a new position when the log is written. As we
discussed in the previous section, for relatively small seeks the rotational latency of the IO will dominate the seek
time. So, if the log file is placed along with the other frequently accessed data on the outside half of the disk,
interference will not be a significant problem. Striping across too few disks is a bigger problem in practice.
In a later section we will discuss the availability issues around striping the log files along with the data files.
The choice of stripe width for the log files is somewhat more tricky. Ideally we would like to stripe the log files using
the same one megabyte stripe width as the rest of the files. However, the log files are written sequentially, and many
storage systems limit the maximum size of a single write operation to one megabyte (or even less). If the maximum
write size is limited, then using a one megabyte stripe width for the log files may not work well. In this case, a
smaller stripe width such as 64K may work better.
Caching RAID controllers are an exception to this. If the storage subsystem can cache write operations in non-
volatile RAM, then a one megabyte stripe width will work well for the log files. In this case, the write operation will
be buffered in cache and the next log writes can be issued before the previous write is destaged to disk.
Archive log files have somewhat similar issues. However, unlike online logs it is possible to parallelise archive log
writes at the Oracle level. This can be done in Oracle release 8.1 or later by configuring multiple archiver processes.
In previous releases, archiving can be parallelised by issuing the ‘archive log current’ command. Alternately, the
archive log files can also be striped using a 64K stripe width.

SUMMARY OF THE ORACLE IO WORKLOAD
The Oracle IO workload is complex, application dependent, operation dependent, and data dependent. Therefore,
designing a load dependent storage configuration is very difficult. Fortunately most of this complexity can be
ignored.
The main attributes of the Oracle IO workload that must be considered are the following:

• Sequential operations issue large IOs, random operation issue small IOs. Therefore, if the storage subsystem
does not break up the IO operations, sequential operations will execute very efficiently.

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

• Direct read and write operations perform asynchronous read ahead. Therefore, for the fastest possible execution,
ensure that the read ahead operations run on separate disks.

• Parallel execution generates very high IO rates. Therefore, data must be striped across many disks so that the
storage configuration does not become a bottleneck to performance.

• Log writes are not parallelised at the Oracle level. Therefore the online log files should be striped. The width of
the stripe depends on whether a caching RAID controller is being used.

THE SAME CONFIGURATION
With the background given in the previous sections, we are now ready to discuss the SAME configuration in detail.
The goal of the SAME configuration is to be as simple as possible. There are only four basic rules in SAME. They
are:
1. Stripe all files across all disks using a one megabyte stripe width
2. Mirror data for high availability
3. Place frequently accessed data on the outside half of the disk drives
4. Subset data by partition, not disk

STRIPE ALL FILES ACROSS ALL DISKS USING A ONE MEGABYTE STRIPE WIDTH

Striping all files across all disks ensures that the full bandwidth of all the disk drives is available for any operation.
Therefore, parallel execution and other IO intensive operations will not be unnecessarily bottlenecked because of the
disk configuration. You cannot reconfigure your storage without a great deal of effort, so striping across all disks is
the safest and most future-proof choice you can make.

Some people base their storage configuration on average or expected IO activity. This is a very dangerous thing to
do because it limits maximum throughput. Maximum throughput effects many things including the speed of batch
jobs and recovery operations. This translates into delays completing critical business processing and more down time.
Therefore, basing a configuration on expected IO activity costs the business money and reduces service levels.
By striping all files across all disks we equalize the load across disk drives and eliminate hot-spots. This improves
response time by shortening disk queues. In theory, this extreme striping can cause “interference” between different
jobs accessing the same disk, thus increasing response time. However, in practice this does not occur. By using large
IOs for sequential access and concentrating frequently accessed data on the outside of disks we greatly reduce this
effect. In practice the additional bandwidth and reduced queuing provided by extreme striping more than
compensate for interference effects.
One of the most important benefits of striping across all disks is that it reduces administrative burden. With full
striping, it is no longer necessary to constantly move files around in order to compensate for long disk queues caused
by over utilized disks. Some sites spend significant resources “managing” this problem. Full striping eliminates this
issue altogether.
Striping across all disks using a one megabyte stripe width is fast for sequential access. The large stripe width ensures
that the disks spend most of their time transferring data, not positioning the disk head. The use of striping also
allows Oracle level read-ahead to make use of multiple disks to speed the transfer rate.
Striping across all disks is great for random IO operations. A single disk can only perform about one hundred
random IOs per second. Striping across all disks spreads this load across the entire disk farm. This ensures that
there are not a few disk arms that bottleneck the performance of the database, while others sit idle.
Striping across all disks is the ideal, but for very large databases it may not be possible to stripe all data across all
disks. This is because of limitations on the number of volumes and disks supported by current volume managers.
The exact limits depend on the software and hardware stack in use. Often, high tens of disks works well, but limits
are reached at several hundred disks.

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

Why does the SAME configuration recommend a one megabyte stripe width? Let’s examine the reasoning behind
this choice.
Why not use a stripe depth smaller than one megabyte? Smaller stripe depths can improve disk throughput for a
single process by spreading a single IO across multiple disks. However IOs that are much smaller than a megabyte
can cause seek time to becomes a large fraction of the total IO time. Therefore, the overall efficiency of the storage
system is reduced. In some cases it may be worth trading off some efficiency for the increased throughput that
smaller stripe depths provide. In general it is not necessary to do this though. Parallel execution at database level
achieves high disk throughput while keeping efficiency high. Also, remember that the degree of parallelism can be
dynamically tuned, whereas the stripe depth is very costly to change.
Why not use a stripe depth bigger than one megabyte? One megabyte is large enough that a sequential scan will
spend most of its time transferring data instead of positioning the disk head. A bigger stripe depth will improve scan
efficiency but only modestly. One megabyte is small enough that a large IO operation will not “hog” a single disk for
very long before moving to the next one. Further, one megabyte is small enough that Oracle’s asynchronous read-
ahead operations access multiple disks. One megabyte is also small enough that a single stripe unit will not become a
hot-spot. Any access hot-spot that is smaller than a megabyte should fit comfortably in the database buffer cache.
Therefore it will not create a hot-spot on disk.
As discussed above, there are several competing goals that must be balanced when choosing a stripe depth. A one
megabyte stripe depth satisfies all these goals without short changing any of them. This is not to say that there is
something “magical” about the value of one megabyte. A value that is somewhat smaller or larger will also work
well. However, values that are very different will leave some goal under optimized.
As disk technology advances, the stripe depth will need to be gradually increased to a value larger than one megabyte.
This is because the transfer rate for disks is increasing faster than the positioning time is decreasing. This is a
gradual change but it should be considered when deploying newer generation disk technology.

MIRROR DATA FOR HIGH AVAILABILITY

The simplest way to ensure that data is not lost is to implement mirroring at the storage subsystem level.
It is generally easiest to implement mirroring at the disk or partition level and then implement striping on top of the
mirrored disks
The only way to lose data that is mirrored is to have multiple disk failures. Current disk drives are highly reliable so
the probability of multiple failures is minute. Also, many systems allow a spare drive to be configured so that repair
occurs rapidly after a mirror failure.
Some people worry that extensive use of striping will increase the probability of data loss. This is not true. Striping
increases the damage that occurs when a double disk failure occurs but it does not make it more probable. If all files,
are striped across all disks then any double disk failure that strikes both disks in a mirror will cause the entire
database to need recovery instead of just the files that were on the failed disks. This lengthens the time to perform
recovery. However, restore from tape and recovery is always a slow process, even for a single disk.
There are many failure scenarios that are much more likely than a double disk failure. These include operator or
application error, data corruption, etc. The best way to protect against these more likely failures is to implement a
standby database. A standby database will also protect against a double disk failure. Thus, achieving extreme high
availability requires a standby database, and this also solves the problem of double disk failure. Hence, striping
should not decrease the availability of a well managed database.
Striping the online log files across many disks does increase the probability that a double disk failure will destroy an
online log. Loss of an online log will cause unrecoverable loss of the most recent updates. Again, the probability of
this is very low, and a standby or remote mirror of the online log is the best way to protect against it. If a standby is
too complex or expensive to implement and you want to reduce the very low probability of data loss, then you should
implement additional mirroring of the online logs, control file, and archive logs. We call these three sets of files the
recovery set. These are the files that are needed to perform a full recovery from a backup.

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

Ideally you should create an additional mirror of all files in the recovery set at the Oracle level. Mirroring by Oracle
using file multiplexing is somewhat more resilient to corruptions than mirroring at the storage subsystem level1. The
additional copy of the recovery set should be separated from the main copies in every way possible in order to reduce
the incidence of correlated failures. For example, the additional mirror should be on a separate files system, which
resides on a separate volume, which is on different disks, accessed by different controllers, and ideally on a separate
RAID device.
Raid5 and its equivalents can also be used to prevent data loss. For databases that have large amounts of highly read
intensive data, Raid5 provides a more cost effective solution than mirroring. However, as we move into a world of
fewer very high capacity disks, the storage benefits of Raid5 will become less significant, and its performance costs
will become more significant. Also, mirror splits provide a very nice way to perform a quick on-disk copy or backup
of a database or tablespace. Mirror splits cannot be done in a Raid5 configuration. In addition, Raid5 is a more
complicated technology that has more failure modes than mirroring. Therefore, we believe that Raid5 technology will
become less important in the future. To simplify the storage configuration we recommend simple mirroring for most
databases.

PLACE FREQUENTLY ACCESSED DATA ON THE OUTSIDE HALF OF THE DISK DRIVES

As was discussed before, by limiting most accesses to the outside half of disk drives, the random read time is reduced
to close to the minimum, and the disk transfer rate is increased to close to the maximum.
One way to accomplish this is to measure or predict the IO rates of the various tablespaces in the database, and
position tablespaces with higher than median IO rates on the outside half of the disk drives. In this solution, the
online logs and archive logs should be placed on the outside half of the disk drive since they can receive a lot of IO
activity during updates.
Another way to accomplish this is to just leave the inside half of the disk drives empty. Since disk drive capacity is
increasing much faster than disk performance, it will become increasingly common to purchase many more disk
drives than are necessary to just hold the data. In this solution, it makes sense to use the remaining space to store
on-disk backups of the database. If disk trends continue for many more years, disks might start looking like geologic
strata. The outer layers of the disk will hold newer data while the inner layers contain increasingly older data.
Some storage systems allow a primary mirror copy to be designated. The primary mirror copy is preferentially used
for read operations while write operations happen to both disk drives. On these storage systems it may be beneficial
to place the primary copy of the database on the outside half of the disk drives, and the non-primary copy on the
inside half. Since most databases are quite read intensive, this may provide a high degree of locality to the outer half
of the disk drive. In this solution, the logs files and their mirrors should be placed on the outside half of the disk
drives since those are known to be write intensive.

SUBSET DATA BY PARTITION NOT DISK

In some cases it is necessary to separate some database files from others. For example, some sites create a remote
mirror of the online logs to prevent data loss in a disaster. Other sites want to separate read only data from writeable
data. Others want to implement extra mirroring for a subset of the database. Often these data files are placed in a
separate volume that is treated differently from the rest of the volumes on the system.
When creating these separate volumes it is common to place them on a separate set of disks from the rest of the
database. Unfortunately, this isolates the files onto a small set of disks that can then become a performance
bottleneck for some operations. Therefore, it is better to create a partition across all the existing disks, and
concatenate and stripe the partition to form the separate volumes. This separates the data files logically while
maintaining physical access to all the disks.

1 Because Oracle multiplexing issues two entirely independent IOs. A failure in the IO stack at any level is less likely to effect
both IOs. Also, Oracle performs logical validation of the blocks on read, and can correct corruptions by reading the other plex.

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

Log Data1 Data2
Log

Data1
Data2

Log
Data1
Data2

Log
Data1
Data2

The subset by partition rule is not really a separate rule. It is a variant of the first rule. It really is just a way to
preserve striping across all disks while creating subsets of data.

ADDING DISKS
The primary issue with the SAME methodology is that adding (or subtracting) disk space is more difficult to do. If
the database is striped across all of the existing disks then adding a new disk means restriping the database. For a
large database this can take a long time. There are a number of ways to handle this issue.
The best way to handle the issue of adding disks is to not do it. Ideally, careful planning is done ahead of time to
ensure that sufficient space is allocated for the expansion needs of the database. With disk capacity increasing rapidly
over time, it will become commonplace to over allocate storage space for databases to ensure there are enough disks
to satisfy performance goals. Even if it is not possible to allocate all the needed space up front, it should be possible
to add space in big increments so that space addition is a rare event.
Another option is to deploy storage technology that allows online reorganization of data. For example, recent releases
of the Veritas volume manager allow online restriping of volumes. The restriping activity occurs in background and
has negligible performance impact on online operations. Background restriping can take a long time to complete, but
adding disks should occur very infrequently, so it should not matter how long it takes. This is also a very good
solution because it preserves the benefits of the SAME methodology with little or no compromises.
Often, the need is for more capacity, not more performance. In this case it is often possible to replace the existing
disks with a new generation of larger disks. Here the data on the existing disks is copied to the new disks and then
new partitions are created with the remaining space on the new disks. These new partitions can then be striped to
form a new volume(s) to use for additional database data.
Some times when more space is added, a new storage device (RAID box) is deployed to replace the old one. In this
case, the storage on the new device can be configured and then a backup of the database can be restored onto the
new device. Media recovery can then be applied to the database until it is almost caught up with the production
database. At this point, the production database can be shut down and the remaining logs can be applied to the new
storage device. Once this is done it is ready to replace the old storage device. Essentially a standby database is
created from the production database and graceful switch over is performed to the standby database.
Another option is to create groups of disk and stripe only within the group. This is sometimes called a striping
group. For example, you can separate the disk pool into groups of 8 disks. Striping is done within the eight disk
striping group. Additional disks must be added in groups of eight. This is a compromise solution between complete
striping and no striping. It simplifies the problem of adding disks, but brings back the issues of IO imbalances
among the groups, and of parallel operations being limited by the throughput of one group. If you choose to go this
route then make the number of disks per group as large as possible. The more CPUs you have the larger the group
should be. Try to have at least four disks per CPU and preferably eight or more.
One of the problems with restriping when a new disk is added is that it requires reorganizing the entire database. If
you have eighty disks and want to add ten more, it is expensive to reshuffle the data on the existing eighty disks. A
way to avoid this is to create multiple partitions per disk. When more disks are added, some of the partitions on the
existing disks can be moved to the new disks, and then the freed space can be used for creating fresh partitions. This
will not produce files that are ninety way striped, but it will preserve the eighty way striping. We call this approach

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

1

2

3

1

2

3

1

2

3

1

2

4

4

2

3

1

4

3

1

2

4

4

2

3

1

4

3

1

2

3

1

2

3

1

2

3

6

5

4

4

6

5

5

4

6

6

5

4

4

6

5

5

4

6

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

5

4

4

2

5

5

4

3

1

5

4

4

2

5

5

4

3

1

2

3

1

2

3

1

2

3

1

2

3
Fig 3

“sliding the stripe”. Contrast this with striping groups in which to add ten disks requires restricting the striping to
span no more than ten disks.
A detailed example will help in understanding this last option. Suppose you have six disks each of which is broken
up into three partitions as shown in figure 1 below. The partitions labeled with the same number are then striped to
form a volume. So, for example, all the partitions with the number ‘1’ are striped to form a volume. These volumes
are then added to a single file system on which the database is created.

The number of partitions per disk determines the percentage we must increment the disks by in each step. In this
example we have three partitions per disk so we would add 33% more disks. Since there are six disk in this example,
we would add disks in sets of two. After we add the two disks we can move six partitions over, and create six new
ones as shown in figure 2. If we had used six partitions per disk, we could add one disk at a time.

Note that we have created a new volume labeled number ‘4’ that is striped across all the original disks. The old
volumes or now striped across the new disks and some of the original disks.
If we add two more disks the configuration would look like figure 3:

If two more disks are added the final result is shown in figure 4.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3
Fig 1

Fig 2

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

Note that the contents of the original six disks are now on the six new disks. If we want to keep adding disks we can
apply the same process to these disks. This scheme is more complicated than simply adding striping groups but it
does a better job of preserving the benefits of extensive striping. The degree of striping that existed on the original
disk configuration is preserved as new disks are added. In the example, we always preserved six way striping as new
disks were added. If you use a volume manager that allows partitions to be moved online, then this entire process can
be performed with no downtime.
With today’s technology there is sometimes a tradeoff between the effort required to modify a configuration and daily
performance and monitoring. Remember that modifying a storage configuration should be a rare operation so it
often makes sense to optimize for the normal case at the expense of the reorganization case.

DISCUSSION OF SAME
The best thing about the SAME configuration is that it is very simple and it works for all database workloads. You
don’t have to get into the details of the application. SAME works well for OLTP, warehouse, and batch workloads.
SAME works well for any application, operation or data subset. SAME produces maximum IO bandwidth to allow
parallel execution to scale.
To set up a storage configuration using SAME you only need to know the total disk space needed by the application
and the approximate total IO throughput needed. These determine the number of disks. Once the number of disks
are known you can simply mirror the disks, stripe the resulting volumes and then build a file system on top of this.
The SAME configuration is viable for a number of reasons:

• Current volume managers allow efficient striping across many disks

• Mirrored disks with hot replacement provide highly reliable storage. This balances the risk of using extensive
striping.

• Sequential access from Oracle issues large IOs. This minimizes seek overhead.

• Parallel execution produces very high IO parallelism rates. This removes the need for fine grain striping.

• RAID caches absorb high write rates. This eliminates the need for fine grain striping of log files.

KEEP IT SIMPLE
It is the goal of the SAME configuration to be as simple as possible. We believe there is great power in simplicity.
Many people try to micro-optimize a storage configuration. In our experience this usually creates complexity and
extra administrative burden without providing any significant gains. Therefore, if you believe in the ideas presented
in this paper, try to adopt the configuration without adding any embellishments unless you can demonstrate that the
basic configuration will not work well.
A few of the recommendations in this paper are contrary to current practice. In particular, people often question the
wisdom of striping across all disks, and of including the log files in the same stripe set as the data files. We have
performed a number of experiments in which the logs were separated into distinct disks, and data files were grouped
into distinct sets of disks. In all the experiments, the simple “stripe all files over every disk” approach performed as
well or better than the best subset that experienced experts were able to come up with. Fundamentally, striping
across all disks allows any operation to use all the available disk bandwidth. Separating data into islands of disks
causes disk bottlenecks to occur for some operations.
It is also important to not organize the storage configuration around optimizing rare events such as double disk failure
and disk space addition. It is better to optimize around daily performance and scalability, even if it means more
complexity for some rare event.

Fig 4

Deploying, Managing, and Administering the Oracle Internet Platform

Paper #295

BACKUP AND RECOVERY
The SAME configuration can improve the performance of backup and recovery. Backup and recovery are very IO
intensive operations. The intensive striping that is used in the SAME configuration allows these operations to run at
full speed with minimal disk bottlenecks.

CONCLUSION
Storage configuration and maintenance does not have to be complex and labor intensive. By following some simple
guidelines you can create a storage configuration that is simple, has excellent performance, and good availability. The
SAME configuration has only four rules.

1. Stripe all files across all disks using a one megabyte stripe width
2. Mirror data for high availability
3. Place frequently accessed data on the outside half of the disk drives
4. Subset data by partition, not disk

The SAME methodology is based on careful analysis of current and future disk technology, combined with a
thorough understanding of the performance and availability requirements of the Oracle database. SAME is an
abstract methodology that is not tied to any particular storage management product in the market today. The basic
ideas of SAME can be implemented with technology that exists today. Some of the details described in this paper are
not available today, but they may become available over the next few years. Oracle is working with leading storage
vendors to optimize and automate this methodology.

ACKNOWLEDGMENTS
Several of the ideas presented in this paper were invented by Bill Bridge. Other ideas resulted from discussions with
Garry Lemasa, Carol Colrain, Jegraj Djegaradjane, and Vikram Joshi.

