The Linux-PAM System Administrators’ Guide

Andrew G. Morgan, morgan@kernel . org DRAFT v0.77 2002/07/10

This manual documents what a system-administrator needs to know about the Linux-PAM library. It covers the
correct syntax of the PAM configuration file and discusses strategies for maintaining a secure system.

Contents
1 Introduction 5
2 Some comments on the text 6
3 Overview 6
3.1 Getting started 8
4 The Linux-PAM configuration file 10
4.1 Configuration file syntax L 10
4.2 Directory based configuration L 13
4.3 Generic optional arguments L. Lt e e e e e e e e e e e e 14
4.4 Example configuration file entries Lo 15
4.4.1 Default policy o . . o e e e e e 15
5 Security issues of Linux-PAM 17
5.1 If something goes wrong e e e 17
5.2 Avoid having a weak ‘other’ configuration 19
6 A reference guide for available modules 19
6.1 Theaccessmodule e e 19
6.1.1 Synopsis e e e e 19
6.1.2 Overviewof module 20
6.1.3 Account cCOMpONEnt i i e e e e e e e e 20
6.2 Chroot e 21
6.2.1 Synopsiso e e e e e e e 21
6.2.2 Overview of module e 21
6.2.3 Account component: L L. oL e e e e e e e e e e 21

6.2.4 Authentication component: oL e 21

CONTENTS 2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.2.5 Session component: L. L oL e e e e e e e e e 22
Cracklib pluggable password strength-checker0 0. 22
6.3.1 Synopsiso e e e e e 22
6.3.2 Overviewof module 22
6.3.3 Password componentl 23
The locking-out module 26
6.4.1 Synopsis L e e e e e 26
6.4.2 Overviewof module L 26
6.4.3 Account component Ll oLl e e e e 26
6.4.4 Authentication component. Lo oL e e e 27
6.4.5 Password component L.l e e e e e e 27
6.4.6 Session component Lol e e e e e e e e 28
Set/unset environment variables L L L 28
6.5.1 SYNOPSIS « « v ot e e e e e e e e e e e e e e e e e e 28
6.5.2 Overviewof module 28
6.5.3 Authentication componento oL e 29
The filter module 29
6.6.1 SYNOPSIS . « . v vt e e e e e e e e e e e e e e e e 29
6.6.2 Overviewof module 30
6.6.3 Account+Authentication+Password+Session components 30
Anonymous access module L L 31
6.7.1 Synopsis e 31
6.7.2 Overviewof module 32
6.7.3 Authentication component Lo e e e 32
The group access module 32
6.8.1 Synopsiso e e e e e e e 32
6.8.2 Overviewof module 33
6.8.3 Authentication component. L. oL e 33
Add issue file to user prompt L L L L e e e e 34
6.9.1 Synopsiso e e e e e 34
6.9.2 Overviewof module 34
6.9.3 Authentication component L L e 34
The Kerberos 4 module. 35

6.10.1 Synopsis L e e e e e e e e 35

CONTENTS 3

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.10.2 Overview of module 36
6.10.3 Session component Lo e e e e 36
6.10.4 Password component L o e e e e e e e e 36
6.10.5 Authentication component e 36
The last login module 37
6.11.1 Synopsis L e e e 37
6.11.2 Overview of module e 37
6.11.3 Session componentl e e e e e e 37
The resource limits module L 38
6.12.1 SYNOPSIS « « « v v v e 38
6.12.2 Overview of module 39
6.12.3 Session component Ll oLl e e e e e e e e e 39
The list-file module 41
6.13.1 SYNoPSIS . « « v v e e e e e e e e e e e e e e e e 41
6.13.2 Overview of module 42
6.13.3 Authentication component Lo e 42
The mail module e 43
6.14.1 SYNnoPSIS « « « v v v e e e e e e e e e e e e e e e e e e e 43
6.14.2 Overview of module 43
6.14.3 Session component oL e e e e e e e e e 43
6.14.4 Authentication componentl e 44
Create home directories on initial login L Lo Lo 45
6.15.1 Synopsis e 45
6.15.2 Overview of module 45
6.15.3 Session component Lol e e e e e 45
Output the motd file o e 46
6.16.1 SYNOPSIS . « « v v vt e e e e e e e e e e e e e e e e e e 46
6.16.2 Overview of module 46
6.16.3 Session component Lol e e e e e e e e 46
The no-loginmodule 47
6.17.1 SYNOPSIS . « « v v v e e e e e e e e e e e e e e e e 47
6.17.2 Overview of module 47
6.17.3 Authentication component Lo e 47
The promiscuous module 48

CONTENTS 4

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.18.1 SYNOPSIS « « « v v v e e e e e e e e e e e e e e e e e 48
6.18.2 Overview of module L 48
6.18.3 Account+Authentication+Password+Session components 48
The Password-Database module 49
6.19.1 Synopsis e e e 49
6.19.2 Overview of module 49
6.19.3 Account COMpONENt i i e e e e e e e e e 49
6.19.4 Authentication component 50
6.19.5 Password cOmponent i it e e e e e e e e e e e e e 51
6.19.6 Session cOMPONENt L L e e e e e e e e e e 51
The RADIUS session module e 52
6.20.1 Synopsis oo i e e e e e e e e e e e 52
6.20.2 Overviewof module 52
6.20.3 Session cOMPONENt Lo e e e e e e e e e e e 52
The rhosts module e 53
6.21.1 Synopsis oL e e e e e e e 53
6.21.2 Overviewof module 54
6.21.3 Authentication component oL e 54
The root access module L 55
6.22.1 Synopsiso e e e e e e 55
6.22.2 Overview of module L 56
6.22.3 Authentication componento e 56
The securetty module 56
6.23.1 SYNOPSIS « « v v v e 56
6.23.2 Overview of module 57
6.23.3 Authentication component.o oL e 57
The login counter (tallying) module 57
6.24.1 SYNOPSIS « « v v v e 57
6.24.2 Overview of module 58
6.24.3 Authentication component.o e 58
6.24.4 Account component L oL e e e e e e e e e e 58
Time control L e e e e 59
6.25.1 Synopsis e e e e e e e 59

6.25.2 Overview of module e 60

1. Introduction 5

6.25.3 Account component e e e e e e e e e e e e e 60

6.26 The Unix Password module 61
6.26.1 Synopsis e e e e e e e e 61

6.26.2 Overview of module 62

6.26.3 Account COMPONENt o ottt e e e e e e e e e e e 62

6.26.4 Authentication component. 62

6.26.5 Password componentol e e e e e 63

6.26.6 Session componentl e e e e e 64

6.27 The userdb module e 64
6.27.1 SYNOPSIS « « « v v v e 64

6.27.2 Overview of module 65

6.27.3 Authentication component. Lo e 65

6.28 Warning logger module. L 66
6.28.1 SYNOPSIS « « v v v e 66

6.28.2 Overview of module 66

6.28.3 Authentication+Password component oL oo 67

6.29 The wheel module e 67
6.29.1 SYNOPSIS . « « v vt e e e e e e e e e e e e e e e e e 67

6.29.2 Overview of module L 67

6.29.3 Authentication and Account componentso 0oL 67

7 Files 68
8 See also 69
9 Notes 69
10 Author/acknowledgments 69
11 Bugs/omissions 69
12 Copyright information for this document 70

1 Introduction

Linux-PAM (Pluggable Authentication Modules for Linux) is a suite of shared libraries that enable the
local system administrator to choose how applications authenticate users.

2. Some comments on the text 6

In other words, without (rewriting and) recompiling a PAM-aware application, it is possible to switch between
the authentication mechanism(s) it uses. Indeed, one may entirely upgrade the local authentication system
without touching the applications themselves.

Historically an application that has required a given user to be authenticated, has had to be compiled to use
a specific authentication mechanism. For example, in the case of traditional UN*X systems, the identity of
the user is verified by the user entering a correct password. This password, after being prefixed by a two
character “salt”, is encrypted (with crypt(3)). The user is then authenticated if this encrypted password
is identical to the second field of the user’s entry in the system password database (the /etc/passwd file).
On such systems, most if not all forms of privileges are granted based on this single authentication scheme.
Privilege comes in the form of a personal user-identifier (uid) and membership of various groups. Services
and applications are available based on the personal and group identity of the user. Traditionally, group
membership has been assigned based on entries in the /etc/group file.

Unfortunately, increases in the speed of computers and the widespread introduction of network based com-
puting, have made once secure authentication mechanisms, such as this, vulnerable to attack. In the light
of such realities, new methods of authentication are continuously being developed.

It is the purpose of the Linux-PAM project to separate the development of privilege granting software
from the development of secure and appropriate authentication schemes. This is accomplished by providing
a library of functions that an application may use to request that a user be authenticated. This PAM
library is configured locally with a system file, /etc/pam.conf (or a series of configuration files located in
/etc/pam.d/) to authenticate a user request via the locally available authentication modules. The modules
themselves will usually be located in the directory /1ib/security and take the form of dynamically loadable
object files (see dlopen(3)).

2 Some comments on the text

Before proceeding to read the rest of this document, it should be noted that the text assumes that certain files
are placed in certain directories. Where they have been specified, the conventions we adopt here for locating
these files are those of the relevant RFC (RFC-86.0, see 8 (bibliography)). If you are using a distribution of
Linux (or some other operating system) that supports PAM but chooses to distribute these files in a diferent
way you should be careful when copying examples directly from the text.

As an example of the above, where it is explicit, the text assumes that PAM loadable object files (the modules)
are to be located in the following directory: /1ib/security/. This is generally the location that seems to
be compatible with the Linux File System Standard (the FSSTND). On Solaris, which has its own licensed
version of PAM, and some other implementations of UN*X, these files can be found in /usr/1ib/security.
Please be careful to perform the necessary transcription when using the examples from the text.

3 Overview

For the uninitiated, we begin by considering an example. We take an application that grants some service
to users; login is one such program. Login does two things, it first establishes that the requesting user is
whom they claim to be and second provides them with the requested service: in the case of login the service
is a command shell (bash, tcsh, zsh, etc.) running with the identity of the user.

3. Overview 7

Traditionally, the former step is achieved by the login application prompting the user for a password and
then verifying that it agrees with that located on the system; hence verifying that as far as the system is
concerned the user is who they claim to be. This is the task that is delegated to Linux-PAM.

From the perspective of the application programmer (in this case the person that wrote the login application),
Linux-PAM takes care of this authentication task — verifying the identity of the user.

The flexibility of Linux-PAM is that you, the system administrator, have the freedom to stipulate which
authentication scheme is to be used. You have the freedom to set the scheme for any/all PAM-aware
applications on your Linux system. That is, you can authenticate from anything as naive as simple trust
(pam_permit) to something as paranoid as a combination of a retinal scan, a voice print and a one-time
password!

To illustrate the flexibility you face, consider the following situation: a system administrator (parent) wishes
to improve the mathematical ability of her users (children). She can configure their favorite “Shoot ’em up
game” (PAM-aware of course) to authenticate them with a request for the product of a couple of random
numbers less than 12. It is clear that if the game is any good they will soon learn their multiplication tables.
As they mature, the authentication can be upgraded to include (long) division!

Linux-PAM deals with four separate types of (management) task. These are: authentication management;
account management; session management; and password management. The association of the preferred
management scheme with the behavior of an application is made with entries in the relevant Linux-PAM
configuration file. The management functions are performed by modules specified in the configuration file.
The syntax for this file is discussed in the section 4 (below).

Here is a figure that describes the overall organization of Linux-PAM.

P + / Ae————— + } +
| authentication-[---->--\--] Linux- |--<--| PAM config filel
| + [----<--/--1 PAM I | |
| [conversation()] [--+ \ | | X auth .. a.so |
o + | / +-n--n-----+ | X auth .. b.so |
| [I M /
| service user | A | | [—— ’
I [v A
Fo e + e | —— | [p—— oo +
to—-u----- u----+ | | I
| auth I--Lal--[b1--[cl
S +
| acct I--[Lb1--[al
S +
| password |--[b1--[c]
S +
| session I--[Lel--[c]l
S +

By way of explanation, the left of the figure represents the application; application X. Such an application
interfaces with the Linux-PAM library and knows none of the specifics of its configured authentication
method. The Linux-PAM library (in the center) consults the contents of the PAM configuration file and
loads the modules that are appropriate for application-X. These modules fall into one of four management

3. Overview 8

groups (lower-center) and are stacked in the order they appear in the configuration file. These modules,
when called by Linux-PAM, perform the various authentication tasks for the application. Textual infor-
mation, required from/or offered to the user, can be exchanged through the use of the application-supplied
conversation function.

3.1 Getting started
The following text was contributed by Seth Chaiklin:

To this point, we have described how PAM should work in an

ideal world, in which all applications are coded properly.
However, at the present time (October 1998), this is far

from the case. Therefore, here are some practical considerations

in trying to use PAM in your system.
Why bother, is it really worth all the trouble?

If you running Linux as a single user system, or in an
environment where all the users are trusted, then there

is no real advantage for using PAM.

Ed: there is actually an advantage since you can dummy down the authentication to the point where you
don’t have any... Almost like Win95.

In a networked environment, it is clear that you need to think a little more about how users etc., are
authenticated:]

If you are running Linux as a server, where several different

services are being provided (e.g., WWW with areas restricted by
password control, PPP), then there can be some real and interesting
value for PAM. In particular, through the use of modules, PAM can
enable a program to search through several different password
databases, even if that program is not explicitly coded for

that particular database. Here are some examples of the possibilities
that this enables.

o Apache has a module that provides PAM services. Now
authentication
to use particular directories can be conducted by PAM, which
means that the range of modules that are available to PAM can
be used, including RADIUS, NIS, NCP (which means that Novell
password databases can be used).

o pppd has a PAMified version (available from Red Hat) Now it is
possible to use a series of databases to authenticate ppp users.
In addition to the normal Linux-based password databases (such
as /etc/passwd and /etc/shadow), you can use PAM modules to
authenticate against Novell password databases or NT-based

password databases.

3. Overview

o The preceding two examples can be combined. Imagaine that the
persons in your office/department are already registered with a
username and password in a Novell or NT LAN. If you wanted to
use this database on your Linux server (for PPP access, for
web access, or even for normal shell access), you can use PAM
to authenticate against this existing database, rather than

maintain a separate database on both Linux and the LAN server.

Can I use PAM for any program that requires authentication?

Yes and no. Yes, if you have access to the source code, and can
add the appropriate PAM functions. No, if you do not have access
to the source code, and the binary does not have the PAM functions
included.

In other words, if a program is going to use PAM, then it has to
have PAM functions explicitly coded into the program. If they

are not, then it is not possible to use PAM.
How can I tell whether a program has PAM coded into it or not?

A quick-and-dirty (but not always reliable) method is to 1ldd
<programname>

If libpam and libpam_misc are not among the libraries that the program
uses, then it is not going to work with PAM. However, it is possible
that the libraries are included, but there are still problems, because
the PAM coding in the program does not work as it should. So a

more reliable method is to make the follow tests.

In the /etc/pam.d directory, one needs to make a configuration file
for the program that one wants to run. The exact name of the
configuration

file is hard-coded into the program. Usually, it is the same name as
the

program, but not always. For sake of illustration, let’s assume that
the program is named "pamprog" and the name of the configuration file

is /etc/pam.d/pamprog.
In the /etc/pam.d/pamprog but the following two lines:
auth required pam_permit.so

auth required pam_warn.so

Now try to use pamprog. The first line in the configuration file
says that all users are permitted. The second line will write a

warning to your syslog file (or whether you syslog is writing

messages). If this test succeeds, then you know that you have

a program that can understand pam, and you can start the more

4. The Linux-PAM configuration file 10

interesting work of deciding how to stack modules in your

/etc/pam.d/pamprog file.

4 The Linux-PAM configuration file

Linux-PAM is designed to provide the system administrator with a great deal of flexibility in configuring
the privilege granting applications of their system. The local configuration of those aspects of system security
controlled by Linux-PAM is contained in one of two places: either the single system file, /etc/pam. conf; or
the /etc/pam.d/ directory. In this section we discuss the correct syntax of and generic options respected by
entries to these files.

4.1 Configuration file syntax

The reader should note that the Linux-PAM specific tokens in this file are case insensitive. The module
paths, however, are case sensitive since they indicate a file’s name and reflect the case dependence of typical
Linux file-systems. The case-sensitivity of the arguments to any given module is defined for each module in
turn.

In addition to the lines described below, there are two special characters provided for the convenience of
the system administrator: comments are preceded by a ‘#’ and extend to the next end-of-line; also, module
specification lines may be extended with a ¢\’ escaped newline.

A general configuration line of the /etc/pam. conf file has the following form:
service-name module-type control-flag module-path args

Below, we explain the meaning of each of these tokens. The second (and more recently adopted) way of
configuring Linux-PAM is via the contents of the /etc/pam.d/ directory. Once we have explained the
meaning of the above tokens, we will describe this method.

service-name

The name of the service associated with this entry. Frequently the service name is the conventional
name of the given application. For example, ‘ftpd’, ‘rlogind’ and ‘su’, etc. .

There is a special service-name, reserved for defining a default authentication mechanism. It has the
name ‘OTHER’ and may be specified in either lower or upper case characters. Note, when there is a
module specified for a named service, the ‘OTHER’ entries are ignored.

module-type

One of (currently) four types of module. The four types are as follows:

e auth; this module type provides two aspects of authenticating the user. Firstly, it establishes
that the user is who they claim to be, by instructing the application to prompt the user for a
password or other means of identification. Secondly, the module can grant group membership
(independently of the /etc/groups file discussed above) or other privileges through its credential
granting properties.

4. The Linux-PAM configuration file 11

e account; this module performs non-authentication based account management. It is typically
used to restrict/permit access to a service based on the time of day, currently available system
resources (maximum number of users) or perhaps the location of the applicant user—‘root’ login
only on the console.

e session; primarily, this module is associated with doing things that need to be done for the user
before/after they can be given service. Such things include the logging of information concerning
the opening/closing of some data exchange with a user, mounting directories, etc. .

e password; this last module type is required for updating the authentication token associated with
the user. Typically, there is one module for each ‘challenge/response’ based authentication (auth)
module-type.

control-flag

The control-flag is used to indicate how the PAM library will react to the success or failure of the module
it is associated with. Since modules can be stacked (modules of the same type execute in series, one
after another), the control-flags determine the relative importance of each module. The application
is not made aware of the individual success or failure of modules listed in the ‘/etc/pam.cont’ file.
Instead, it receives a summary success or fail response from the Linux-PAM library. The order of
execution of these modules is that of the entries in the /etc/pam. conf file; earlier entries are executed
before later ones. As of Linux-PAM v0.60, this control-flag can be defined with one of two syntaxes.

The simpler (and historical) syntax for the control-flag is a single keyword defined to indicate the
severity of concern associated with the success or failure of a specific module. There are four such
keywords: required, requisite, sufficient and optional.

The Linux-PAM library interprets these keywords in the following manner:

e required; this indicates that the success of the module is required for the module-type facility to
succeed. Failure of this module will not be apparent to the user until all of the remaining modules
(of the same module-type) have been executed.

e requisite; like required, however, in the case that such a module returns a failure, control is
directly returned to the application. The return value is that associated with the first required
or requisite module to fail. Note, this flag can be used to protect against the possibility of a
user getting the opportunity to enter a password over an unsafe medium. It is conceivable that
such behavior might inform an attacker of valid accounts on a system. This possibility should
be weighed against the not insignificant concerns of exposing a sensitive password in a hostile
environment.

e sufficient; the success of this module is deemed ‘sufficient’ to satisfy the Linux-PAM library
that this module-type has succeeded in its purpose. In the event that no previous required module
has failed, no more ‘stacked’ modules of this type are invoked. (Note, in this case subsequent
required modules are not invoked.). A failure of this module is not deemed as fatal to satisfying
the application that this module-type has succeeded.

e optional; as its name suggests, this control-flag marks the module as not being critical to the
success or failure of the user’s application for service. In general, Linux-PAM ignores such a
module when determining if the module stack will succeed or fail. However, in the absence of any
definite successes or failures of previous or subsequent stacked modules this module will determine
the nature of the response to the application. One example of this latter case, is when the other
modules return something like PAM_IGNORE.

4. The Linux-PAM configuration file 12

The more elaborate (newer) syntax is much more specific and gives the administrator a great deal
of control over how the user is authenticated. This form of the control flag is delimeted with square
brackets and consists of a series of value=action tokens:

[valuel=actionl value2=action2 ...]

Here, valuel is one of the following return values: success; open_err; symbol_err; service_err;
system_err; buf_err; perm_denied; auth_err; cred_insufficient; authinfo_unavail;
user_unknown; maxtries; new_authtok_reqd; acct_expired; session_err; cred_unavail;
cred_expired; cred_err; no_module_data; conv_err; authtok_err; authtok_recover_err;
authtok_lock_busy; authtok_disable_aging; try_again; ignore; abort; authtok_expired;
module_unknown; bad_item; and default. The last of these (default) can be used to set the ac-
tion for those return values that are not explicitly defined.

The actionI can be a positive integer or one of the following tokens: ignore; ok; done; bad; die;
and reset. A positive integer, J, when specified as the action, can be used to indicate that the next
J modules of the current module-type will be skipped. In this way, the administrator can develop a
moderately sophisticated stack of modules with a number of different paths of execution. Which path
is taken can be determined by the reactions of individual modules.

e ignore - when used with a stack of modules, the module’s return status will not contribute to
the return code the application obtains.

e bad - this action indicates that the return code should be thought of as indicative of the module
failing. If this module is the first in the stack to fail, its status value will be used for that of the
whole stack.

e die - equivalent to bad with the side effect of terminating the module stack and PAM immediately
returning to the application.

e ok - this tells PAM that the administrator thinks this return code should contribute directly to
the return code of the full stack of modules. In other words, if the former state of the stack would
lead to a return of PAM_SUCCESS, the module’s return code will override this value. Note, if the
former state of the stack holds some value that is indicative of a modules failure, this ’ok’ value
will not be used to override that value.

e domne - equivalent to ok with the side effect of terminating the module stack and PAM immediately
returning to the application.

e reset - clear all memory of the state of the module stack and start again with the next stacked

module.

Each of the four keywords: required; requisite; sufficient; and optional, have an equivalent
expression in terms of the [...] syntax. They are as follows:
e required is equivalent to [success=ok new_authtok_reqd=ok ignore=ignore default=bad]
e requisite is equivalent to [success=ok new_authtok_reqd=ok ignore=ignore default=die]
e sufficient is equivalent to [success=done new_authtok_reqd=done default=ignorel]
e optional is equivalent to [success=ok new_authtok_reqd=ok default=ignore]
Just to get a feel for the power of this new syntax, here is a taste of what you can do with it. With

Linux-PAM-0.63, the notion of client plug-in agents was introduced. This is something that makes it
possible for PAM to support machine-machine authentication using the transport protocol inherent to

4. The Linux-PAM configuration file 13

the client/server application. With the “[... value=action ...]1” control syntax, it is possible
for an application to be configured to support binary prompts with compliant clients, but to gracefully
fall over into an alternative authentication mode for older, legacy, applications.

module-path

The path-name of the dynamically loadable object file; the pluggable module itself. If the first character
of the module path is ‘/’, it is assumed to be a complete path. If this is not the case, the given module
path is appended to the default module path: /1ib/security (but see the notes 2 (above)).

args

The args are a list of tokens that are passed to the module when it is invoked. Much like arguments to
a typical Linux shell command. Generally, valid arguments are optional and are specific to any given
module. Invalid arguments are ignored by a module, however, when encountering an invalid argument,
the module is required to write an error to syslog(3). For alist of generic options see the next section.

Note, if you wish to include spaces in an argument, you should surround that argument with square
brackets. For example:

squid auth required pam_mysql.so user=passwd_query passwd=mada \
db=eminence [query=se1ect user_name from internet_service where \
user_name=’%u’ and password=PASSWORD(’%p’) and \
service=’web_proxy’]

Note, when using this convention, you can include ‘[’ characters inside the string, and if you wish to
include a ‘1’ character inside the string that will survive the argument parsing, you should use ‘\[’. In
other words:

[..[..\]..] T T

Any line in (one of) the configuration file(s), that is not formatted correctly, will generally tend (erring on
the side of caution) to make the authentication process fail. A corresponding error is written to the system
log files with a call to syslog(3).

4.2 Directory based configuration

More flexible than the single configuration file, as of version 0.56, it is possible to configure 1ibpam via the
contents of the /etc/pam.d/ directory. In this case the directory is filled with files each of which has a
filename equal to a service-name (in lower-case): it is the personal configuration file for the named service.

Linux-PAM can be compiled in one of two modes. The preferred mode uses either /etc/pam.d/ or
/etc/pam.conf configuration but not both. That is to say, if there is a /etc/pam.d/ directory then libpam
only uses the files contained in this directory. However, in the absence of the /etc/pam.d/ directory the
/etc/pam. conf file is used (this is likely to be the mode your preferred distribution uses). The other mode
is to use both /etc/pam.d/ and /etc/pam.conf in sequence. In this mode, entries in /etc/pam.d/ override
those of /etc/pam. conf.

The syntax of each file in /etc/pam.d/ is similar to that of the /etc/pam. conf file and is made up of lines
of the following form:

module-type control-flag module-path arguments

4. The Linux-PAM configuration file 14

The only difference being that the service-name is not present. The service-name is of course the name of

the given configuration file. For example, /etc/pam.d/login contains the configuration for the login service.

This method of configuration has a number of advantages over the single file approach. We list them here

to assist the reader in deciding which scheme to adopt:

4.3

A lower chance of misconfiguring an application. There is one less field to mis-type when editing the
configuration files by hand.

Easier to maintain. One application may be reconfigured without risk of interfering with other appli-
cations on the system.

It is possible to symbolically link different services configuration files to a single file. This makes it
easier to keep the system policy for access consistent across different applications. (It should be noted,
to conserve space, it is equally possible to hard link a number of configuration files. However, care
should be taken when administering this arrangement as editing a hard linked file is likely to break
the link.)

A potential for quicker configuration file parsing. Only the relevant entries are parsed when a service
gets bound to its modules.

It is possible to limit read access to individual Linux-PAM configuration files using the file protections
of the filesystem.

Package management becomes simpler. Every time a new application is installed, it can be accompanied
by an /etc/pam.d/zzrrrz file.

Generic optional arguments

The following are optional arguments which are likely to be understood by any module. Arguments (including

these) are in general optional.

debug

Use the syslog(3) call to log debugging information to the system log files.

no_warn

use_

try_

Instruct module to not give warning messages to the application.

first_pass

The module should not prompt the user for a password. Instead, it should obtain the previously typed
password (from the preceding auth module), and use that. If that doesn’t work, then the user will not
be authenticated. (This option is intended for auth and password modules only).

first_pass

The module should attempt authentication with the previously typed password (from the preceding
auth module). If that doesn’t work, then the user is prompted for a password. (This option is intended
for auth modules only).

4. The Linux-PAM configuration file 15

use_mapped_pass

This argument is not currently supported by any of the modules in the Linux-PAM distribution
because of possible consequences associated with U.S. encryption exporting restrictions. Within the
U.S., module developers are, of course, free to implement it (as are developers in other countries).
For compatibility reasons we describe its use as suggested in the DCE-RFC 86.0, see section 8
(bibliography) for a pointer to this document.

The use_mapped_pass argument instructs the module to take the clear text authentication token en-
tered by a previous module (that requests such a token) and use it to generate an encryption/decryption
key with which to safely store/retrieve the authentication token required for this module. In this way
the user can enter a single authentication token and be quietly authenticated by a number of stacked
modules. Obviously a convenient feature that necessarily requires some reliably strong encryption to
make it secure. This argument is intended for the auth and password module types only.

expose_account

In general the leakage of some information about user accounts is not a secure policy for modules to
adopt. Sometimes information such as users names or home directories, or preferred shell, can be used
to attack a user’s account. In some circumstances, however, this sort of information is not deemed
a threat: displaying a user’s full name when asking them for a password in a secured environment
could also be called being ’friendly’. The expose_account argument is a standard module argument
to encourage a module to be less discrete about account information as it is deemed appropriate by
the local administrator.

4.4 Example configuration file entries

In this section, we give some examples of entries that can be present in the Linux-PAM configuration file.
As a first attempt at configuring your system you could do worse than to implement these.

4.4.1 Default policy

If a system is to be considered secure, it had better have a reasonably secure ‘OTHER’ entry. The following is
a paranoid setting (which is not a bad place to start!):

#

default; deny access

#

0THER auth required pam_deny.so
0THER account required pam_deny.so
0THER password required pam_deny.so
0THER session required pam_deny.so

Whilst fundamentally a secure default, this is not very sympathetic to a misconfigured system. For example,
such a system is vulnerable to locking everyone out should the rest of the file become badly written.

The module pam_deny (documented in a later section) is not very sophisticated. For example, it logs no
information when it is invoked so unless the users of a system contact the administrator when failing to
execute a service application, the administrator may go for a long while in ignorance of the fact that his
system is misconfigured.

4. The Linux-PAM configuration file 16

The addition of the following line before those in the above example would provide a suitable warning to the

administrator.
#
default; wake up! This application is not configured
#
0THER auth required pam_warn.so
0THER password required pam_warn.so

Having two “OTHER auth” lines is an example of stacking.

On a system that uses the /etc/pam.d/ configuration, the corresponding default setup would be achieved
with the following file:

#

default configuration: /etc/pam.d/other
#

auth required pam_warn. so

auth required pam_deny.so
account required pam_deny.so
password required pam_warn.so
password required pam_deny.so
session required pam_deny.so

This is the only explicit example we give for an /etc/pam.d/ file. In general, it should be clear how to
transpose the remaining examples to this configuration scheme.

On a less sensitive computer, one on which the system administrator wishes to remain ignorant of much of
the power of Linux-PAM, the following selection of lines (in /etc/pam. conf) is likely to mimic the historically
familiar Linux setup.

#

default; standard UN*X access

#

0THER auth required pam_unix.so
OTHER account required pam_unix.so
0THER password required pam_unix.so
OTHER session required pam_unix.so

In general this will provide a starting place for most applications. Unfortunately, most is not all. One
application that might require additional lines is ftpd if you wish to enable anonymous-ftp.

To enable anonymous-ftp, the following lines might be used to replace the default (OTHER) ones. (*WARN-
ING* as of 1996/12/28 this does not work correctly with any ftpd. Consequently, this description may be
subject to change or the application will be fixed.)

#

ftpd; add ftp-specifics. These lines enable anonymous ftp over
standard UN*X access (the listfile entry blocks access to
users listed in /etc/ftpusers)

#

ftpd auth sufficient pam_ftp.so

5. Security issues of Linux-PAM 17

ftpd auth required pam_unix_auth.so use_first_pass
ftpd auth required pam_listfile.so \

onerr=succeed item=user sense=deny file=/etc/ftpusers

Note, the second line is necessary since the default entries are ignored by a service application (here ftpd) if
there are any entries in /etc/pam. conf for that specified service. Again, this is an example of authentication
module stacking. Note the use of the sufficient control-flag. It says that “if this module authenticates the
user, ignore the subsequent auth modules”. Also note the use of the “use_first_pass” module-argument,
this instructs the UN*X authentication module that it is not to prompt for a password but rely on one
already having been obtained by the pam_ftp module.

5 Security issues of Linux-PAM

This section will discuss good practices for using PAM in a secure manner. It is currently sadly lack-
ing...suggestions are welcome!

5.1 If something goes wrong

Linux-PAM has the potential to seriously change the security of your system. You can choose to have no
security or absolute security (no access permitted). In general, Linux-PAM errs towards the latter. Any
number of configuration errors can dissable access to your system partially, or completely.

The most dramatic problem that is likely to be encountered when configuring Linux-PAM is that of deleting
the configuration file(s): /etc/pam.d/* and/or /etc/pam.conf. This will lock you out of your own system!

To recover, your best bet is to reboot the system in single user mode and set about correcting things from
there. The following has been adapted from a life-saving email on the subject from David Wood:

> What the hell do I do now?

0K, don’t panic. The first thing you have to realize is that
this happens to 50% of users who ever do anything with PAM.
It happened here, not once, not twice, but three times, all
different, and in the end, the solution was the same every

time.

First, I hope you installed LILO with a delay. If you can,
reboot, hit shift or tab or something and type:

LILO boot: linux single
(Replace ’linux’ with ’name-of-your-normal-linux-image’).
This will let you in without logging in. Ever wondered how
easy it is to break into a linux machine from the console?

Now you know.

If you can’t do that, then get yourself a bootkernel floppy

5. Security issues of Linux-PAM

and a root disk a-la slackware’s rescue.gz. (Red Hat’s

installation disks can be used in this mode too.)
In either case, the point is to get back your root prompt.

Second, I’m going to assume that you haven’t completely
nuked your pam installation - just your configuration files.

Here’s how you make your configs nice again:

cd /etc

mv pam.conf pam.conf.orig
mv pam.d pam.d.orig

mkdir pam.d

cd pam.d

and then use vi to create a file called "other" in this

directory. It should contain the following four lines:

auth required pam_unix.so
account required pam_unix.so
password required pam_unix.so
session required pam_unix.so

Now you have the simplest possible PAM configuration that
will work the way you’re used to. Everything should
magically start to work again. Try it out by hitting ALT-F2
and logging in on another virtual console. If it doesn’t
work, you have bigger problems, or you’ve mistyped
something. One of the wonders of this system (seriously,
perhaps) is that if you mistype anything in the conf files,
you usually get no error reporting of any kind on the
console - just some entries in the log file. So look there!

(Try ’tail /var/log/messages’.)

From here you can go back and get a real configuration

going, hopefully after you’ve tested it first on a machine

you don’t care about screwing up. :/

Some pointers (to make everything "right" with Red Hat...):
Install the newest pam, pamconfig, and pwdb from the
redhat current directory, and do it all on the same
command line with rpm...

rpm -Uvh [maybe --force too] pam-* pamconfig-* pwdb-*

Then make sure you install (or reinstall) the newest

6. A reference guide for available modules 19

version of libc, util-linux, wuftp, and NetKit. For
kicks you might try installing the newest versions of
the affected x apps, like xlock, but I haven’t gotten
those to work at all yet.

5.2 Avoid having a weak ‘other’ configuration
It is not a good thing to have a weak default (OTHER) entry. This service is the default configuration for all
PAM aware applications and if it is weak, your system is likely to be vulnerable to attack.

Here is a sample "other" configuration file. The pam_deny module will deny access and the pam_ warn
module will send a syslog message to auth.notice:

#

The PAM configuration file for the ‘other’ service
#

auth required pam_deny.so

auth required pam_warn.so

account required pam_deny.so
account required pam_warn.so
password required pam_deny.so
password required pam_warn.so
session required pam_deny.so
session required pam_warn.so

6 A reference guide for available modules

Here, we collect together some descriptions of the various modules available for Linux-PAM. In general
these modules should be freely available. Where this is not the case, it will be indicated.

Also please note the comments contained in the section 2 (on text conventions above) when copying the
examples listed below.

6.1 The access module

6.1.1 Synopsis

Module Name:

pam_access

Author][s]:

Alexei Nogin <alexei@nogin.dnttm.ru>
Maintainer:

Management groups provided:

account

6. A reference guide for available modules 20

Cryptographically sensitive:
Security rating:
Clean code base:

System dependencies:
Requires a configuration file. By default /etc/security/access.conf is used but this can be over-
ridden.

Network aware:

Through PAM_TTY if set, otherwise attempts getting tty name of the stdin file descriptor with
ttyname (). Standard gethostname(), yp_get_default_domain(), gethostbyname() calls. NIS is
used for netgroup support.

6.1.2 Overview of module

Provides logdaemon style login access control.

6.1.3 Account component

Recognized arguments:

accessfile=/path/to/file.conf; fieldsep=separators

Description:

This module provides logdaemon style login access control based on login names and on host (or
domain) names, internet addresses (or network numbers), or on terminal line names in case of non-
networked logins. Diagnostics are reported through syslog(3). Wietse Venema’s login_access.c
from logdaemon-5.6 is used with several changes by A. Nogin.

The behavior of this module can be modified with the following arguments:

e accessfile=/path/to/file.conf - indicate an alternative access configuration file to override
the default. This can be useful when different services need different access lists.

e fieldsep=separators - this option modifies the field separator character that pam_access will
recognize when parsing the access configuration file. For example: fieldsep=| will cause the

default ‘> character to be treated as part of a field value and ‘|’

becomes the field separator.
Doing this is useful in conjuction with a system that wants to use pam _access with X based
applications, since the PAM_TTY item is likely to be of the form "hostname:0" which includes a *:’

character in its value.

Examples/suggested usage:

Use of module is recommended, for example, on administrative machines such as NIS servers and mail
servers where you need several accounts active but don’t want them all to have login capability.

For /etc/pam.d style configurations where your modules live in /1ib/security, start by adding the
following line to /etc/pam.d/login, /etc/pam.d/rlogin, /etc/pam.d/rsh and /etc/pam.d/ftp:

account required /1lib/security/pam_access.so

6. A reference guide for available modules 21

Note that use of this module is not effective unless your system ignores .rhosts files. See the the
pam_rhosts auth documentation.

A sample access. conf configuration file is included with the distribution.

6.2 Chroot
6.2.1 Synopsis

Module Name:

pam_chroot

Author:

Bruce Campbell <brucec@humbug.org.au>

Maintainer:

Author; proposed on 20/11/96 - email for status

Management groups provided:

account; session; authentication
Cryptographically sensitive:
Security rating:

Clean code base:

Unwritten.
System dependencies:

Network aware:
Expects localhost.
6.2.2 Overview of module

This module is intended to provide a transparent wrapper around the average user, one that puts them in
a fake file-system (eg, their ’/’ is really /some/where/else).

Useful if you have several classes of users, and are slightly paranoid about security. Can be used to limit
who else users can see on the system, and to limit the selection of programs they can run.

6.2.3 Account component:

Need more info here.

6.2.4 Authentication component:

Need more info here.

6. A reference guide for available modules 22

6.2.5 Session component:

Need more info here.

Recognized arguments:

Arguments and logging levels for the PAM version are being worked on.
Description:

Examples/suggested usage:
Do provide a reasonable list of programs - just tossing ’cat’, ’Is’, 'rm’, ’cp’ and ’ed’ in there is a bit...

Don’t take it to extremes (eg, you can set up a separate environment for each user, but its a big waste
of your disk space.)

6.3 Cracklib pluggable password strength-checker

6.3.1 Synopsis
Module Name:
pam _cracklib

Author:
Cristian Gafton <gafton@redhat.com>

Maintainer:

Author.

Management groups provided:

password
Cryptographically sensitive:
Security rating:
Clean code base:

System dependencies:

Requires the system library 1ibcrack and a system dictionary: /usr/lib/cracklib_dict.

Network aware:

6.3.2 Overview of module

This module can be plugged into the password stack of a given application to provide some plug-in strength-
checking for passwords.

This module works in the following manner: it first calls the Cracklib routine to check the strength of the
password; if crack likes the password, the module does an additional set of strength checks. These checks
are:

6. A reference guide for available modules 23

e Palindrome -

Is the new password a palindrome of the old one?

e Case Change Only -

Is the new password the the old one with only a change of case?

e Similar -

Is the new password too much like the old one? This is primarily controlled by one argument, difok
which is a number of characters that if different between the old and new are enough to accept the
new password, this defaults to 10 or 1/2 the size of the new password whichever is smaller.

To avoid the lockup associated with trying to change a long and complicated password, difignore
is available. This argument can be used to specify the minimum length a new password needs to be
before the difok value is ignored. The default value for difignore is 23.

e Simple -
Is the new password too small? This is controlled by 5 arguments minlen, dcredit, ucredit, lcredit,
and ocredit. See the section on the arguments for the details of how these work and there defaults.
e Rotated -

Is the new password a rotated version of the old password?

e Already used -

Was the password used in the past? Previously used passwords are to be found in
/etc/security /opasswd.

This module with no arguments will work well for standard unix password encryption. With md5 encryption,
passwords can be longer than 8 characters and the default settings for this module can make it hard for the
user to choose a satisfactory new password. Notably, the requirement that the new password contain no
more than 1/2 of the characters in the old password becomes a non-trivial constraint. For example, an old
password of the form "the quick brown fox jumped over the lazy dogs" would be difficult to change... In
addition, the default action is to allow passwords as small as 5 characters in length. For a md5 systems it
can be a good idea to increase the required minimum size of a password. One can then allow more credit
for different kinds of characters but accept that the new password may share most of these characters with
the old password.

6.3.3 Password component

Recognized arguments:
debug; type=XXX; retry=N; difok=N; minlen=N; dcredit=N; ucredit=N; lcredit=N; ocredit=N;
use_authtok;

Description:

The action of this module is to prompt the user for a password and check its strength against a system
dictionary and a set of rules for identifying poor choices.

The default action is to prompt for a single password, check its strength and then, if it is considered
strong, prompt for the password a second time (to verify that it was typed correctly on the first

6. A reference guide for available modules 24

occasion). All being well, the password is passed on to subsequent modules to be installed as the new
authentication token.

The default action may be modified in a number of ways using the arguments recognized by the module:

e debug -

this option makes the module write information to syslog(3) indicating the behavior of the module
(this option does not write password information to the log file).

o type=XXX -
the default action is for the module to use the following prompts when requesting passwords:

“New UNIX password: ” and “Retype UNIX password: ”. Using this option you can replace the
word UNIX with XXX.

e retry=N -

the default number of times this module will request a new password (for strength-checking) from
the user is 1. Using this argument this can be increased to N.

e difok=N -
This argument will change the default of 10 for the number of characters in the new password

that must not be present in the old password. In addition, if 1/2 of the characters in the new
password are different then the new password will be accepted anyway.

e minlen=N -
The minimum acceptable size for the new password (plus one if credits are not disabled which is
the default). In addition to the number of characters in the new password, credit (of +1 in length)
is given for each different kind of character (other, upper, lower and digit). The default for this
parameter is 9 which is good for a old style UNIX password all of the same type of character but
may be too low to exploit the added security of a md5 system. Note that there is a pair of length
limits in Cracklib itself, a "way too short" limit of 4 which is hard coded in and a defined limit
(6) that will be checked without reference to minlen. If you want to allow passwords as short
as 5 characters you should either not use this module or recompile the crack library and then
recompile this module.

e dcredit=N -
(N >= 0) This is the maximum credit for having digits in the new password. If you have less
than or N digits, each digit will count +1 towards meeting the current minlen value. The default

for dcredit is 1 which is the recommended value for minlen less than 10. (N < 0) This is the
minimum number of digits that must be met for a new password.

e ucredit=N -
(N >=0) This is the maximum credit for having upper case letters in the new password. If you
have less than or N upper case letters each letter will count +1 towards meeting the current minlen

value. The default for ucredit is 1 which is the recommended value for minlen less than 10. (N
< 0) This is the minimum number of upper case letters that must be met for a new password.

e lcredit=N-
(N >= 0) This is the maximum credit for having lower case letters in the new password. If you
have less than or N lower case letters, each letter will count +1 towards meeting the current minlen

value. The default for lcredit is 1 which is the recommended value for minlen less than 10. (N
< 0) This is the minimum number of lower case letters that must be met for a new password.

6. A reference guide for available modules 25

e ocredit=N -

(N >= 0) This is the maximum credit for having other characters in the new password. If you
have less than or N other characters, each character will count +1 towards meeting the current
minlen value. The default for ocredit is 1 which is the recommended value for minlen less
than 10. (N < 0) This is the minimum number of other characters that must be met for a new
password.

e use_authtok -

This argument is used to force the module to not prompt the user for a new password but use
the one provided by the previously stacked password module.

Examples/suggested usage:

For an example of the use of this module, we show how it may be stacked with the password component

of pam_pwdb:
#
These lines stack two password type modules. In this example the
user is given 3 opportunities to enter a strong password. The
"use_authtok" argument ensures that the pam_pwdb module does not
prompt for a password, but instead uses the one provided by
pam_cracklib.
#
passwd password required pam_cracklib.so retry=3
passwd password required pam_pwdb.so use_authtok

Another example (in the /etc/pam.d/passwd format) is for the case that you want to use md5 password
encryption:

#/PAM-1.0
#
These lines allow a mdb systems to support passwords of at least 14
bytes with extra credit of 2 for digits and 2 for others the new
password must have at least three bytes that are not present in the
old password
#
password required pam_cracklib.so \
difok=3 minlen=15 dcredit= 2 ocredit=2

password required pam_pwdb.so use_authtok nullok md5
And here is another example in case you don’t want to use credits:

#/PAM-1.0
#
These lines require the user to select a password with a minimum
length of 8 and with at least 1 digit number, 1 upper case letter,
and 1 other character
#
password required pam_cracklib.so \
dcredit=-1 ucredit=-1 ocredit=-1 lcredit=0 minlen=8

password required pam_pwdb.so use_authtok nullok mdb

In this example we simply say that the password must have a minimum length of 8:

6. A reference guide for available modules 26

#/PAM-1.0
#
These lines require the user to select a password with a mimimum
length of 8. He gets no credits and he is not forced to use
digit numbers, upper case letters etc.
#
password required pam_cracklib.so \
dcredit=0 ucredit=0 ocredit=0 lcredit=0 minlen=8

password required pam_pwdb.so use_authtok nullok md5

6.4 The locking-out module

6.4.1 Synopsis

Module Name:

pam__ deny

Author:

Andrew G. Morgan <morgan@kernel.org>

Maintainer:

current Linux-PAM maintainer

Management groups provided:

account; authentication; password; session
Cryptographically sensitive:
Security rating:

Clean code base:

clean.
System dependencies:

Network aware:

6.4.2 Overview of module

This module can be used to deny access. It always indicates a failure to the application through the PAM
framework. As is commented in the overview section 3 (above), this module might be suitable for using for
default (the OTHER) entries.

6.4.3 Account component

Recognized arguments:

Description:

This component does nothing other than return a failure. The failure type is PAM_ACCT_EXPIRED.

6. A reference guide for available modules 27

Examples/suggested usage:

Stacking this module with type account will prevent the user from gaining access to the system via
applications that refer to Linux-PAM’s account management function pam_acct_mgmt ().

The following example would make it impossible to login:

#

add this line to your other login entries to disable all accounts
#

login account required pam_deny.so

6.4.4 Authentication component

Recognized arguments:

Description:

This component does nothing other than return a failure. The failure type is PAM_AUTH_ERR in the
case that pam_authenticate() is called (when the application tries to authenticate the user), and is
PAM_CRED_UNAVAIL when the application calls pam_setcred() (to establish and set the credentials of
the user — it is unlikely that this function will ever be called in practice).

Examples/suggested usage:

To deny access to default applications with this component of the pam_deny module, you might include
the following line in your Linux-PAM configuration file:

#

add this line to your existing OTHER entries to prevent
authentication succeeding with default applications.

#

0THER auth required pam_deny.so

6.4.5 Password component

Recognized arguments:

Description:

This component of the module denies the user the opportunity to change their password. It always
responds with PAM_AUTHTOK_ERR when invoked.

Examples/suggested usage:

This module should be used to prevent an application from updating the applicant user’s password.
For example, to prevent login from automatically prompting for a new password when the old one
has expired you should include the following line in your configuration file:

#

add this line to your other login entries to prevent the login
application from being able to change the user’s password.

#

login password required pam_deny.so

6. A reference guide for available modules 28

6.4.6 Session component

Recognized arguments:

Description:

This aspect of the module prevents an application from starting a session on the host computer.

Examples/suggested usage:

Together with another session module, that displays a message of the day perhaps (pam_motd for
example), this module can be used to block a user from starting a shell. We might use the following
entries in the configuration file to inform the user it is system time:

#
An example to see how to configure login to refuse the user a
session (politely)

#

login session required pam_motd.so \
motd=/etc/system_time

login session required pam_deny.so

6.5 Set/unset environment variables

6.5.1 Synopsis
Module Name:
pam_env

Author:
Dave Kinchlea <kinch@kinch.ark.com>

Maintainer:

Author

Management groups provided:

Authentication (setcred)
Cryptographically sensitive:
Security rating:

Clean code base:

System dependencies:

/etc/security/pam_env.conf

Network aware:

6.5.2 Overview of module

This module allows the (un)setting of environment variables. Supported is the use of previously set environ-
ment variables as well as PAM _ITEMs such as PAM_RHOST.

6. A reference guide for available modules 29

6.5.3 Authentication component

Recognized arguments:

debug; conffile=configuration-file-name; envfile=env-file-name; readenv=>0|1

Description:

This module allows you to (un)set arbitrary environment variables using fixed strings, the value of
previously set environment variables and/or PAM_ITEMs.

Allis controlled via a configuration file (by default, /etc/security/pam_env.conf but can be overriden
with conffile argument). Each line starts with the variable name, there are then two possible options
for each variable DEFAULT and OVERRIDE. DEFAULT allows an administrator to set the value
of the variable to some default value, if none is supplied then the empty string is assumed. The
OVERRIDE option tells pam__env that it should enter in its value (overriding the default value) if
there is one to use. OVERRIDE is not used, "" is assumed and no override will be done.

VARIABLE [DEFAULT=[valuel] [OVERRIDE=[value]]

(Possibly non-existent) environment variables may be used in values using the ${string} syntax and
(possibly non-existent) PAM _ITEMs may be used in values using the @{string} syntax. Both the $
and @ characters can be backslash-escaped to be used as literal values (as in \$. Double quotes may
be used in values (but not environment variable names) when white space is needed the full value
must be delimited by the quotes and embedded or escaped quotes are not supported.

This module can also parse a file with simple KEY=VAL pairs on seperate lines (/etc/environment by
default). You can change the default file to parse, with the enufile flag and turn it on or off by setting
the readenv flag to 1 or 0 respectively.

The behavior of this module can be modified with one of the following flags:

e debug - write more information to syslog(3).

e conffile=filename - by default the file /etc/security/pam_env. conf is used as the configuration
file. This option overrides the default. You must supply a complete path + file name.

e envfile=filename - by default the file /etc/environment is used to load KEY=VAL pairs directly
into the env. This option overrides the default. You must supply a complete path + file name.

e readenv=(|1 - turns on or off the reading of the file specified by envfile (0 is off, 1 is on). By
default this option is on.

Examples/suggested usage:

See sample pam_env. conf for more information and examples.

6.6 The filter module

6.6.1 Synopsis
Module Name:
pam_filter

Author:

Andrew G. Morgan <morgan@kernel.org>

6. A reference guide for available modules 30

Maintainer:

Author.

Management groups provided:

account; authentication; password; session

Cryptographically sensitive:
Not yet.

Security rating:

Clean code base:

This module compiles cleanly on Linux based systems.

System dependencies:

To function it requires filters to be installed on the system.

Network aware:

6.6.2 Overview of module

This module was written to offer a plug-in alternative to programs like ttysnoop (XXX - need a reference).
Since writing a filter that performs this function has not occurred, it is currently only a toy. The single filter
provided with the module simply transposes upper and lower case letters in the input and output streams.
(This can be very annoying and is not kind to termcap based editors).

6.6.3 Account+Authentication+Password+{Session components

Recognized arguments:

debug; new_term; non_term; runX

Description:

Each component of the module has the potential to invoke the desired filter. The filter is always
execv(2)d with the privilege of the calling application and not that of the user. For this reason it
cannot usually be killed by the user without closing their session.

The behavior of the module can be significantly altered by the arguments passed to it in the Linux-
PAM configuration file:

e debug -

this option increases the amount of information logged to syslog(3) as the module is executed.

e new_term-

the default action of the filter is to set the PAM_TTY item to indicate the terminal that the user is
using to connect to the application. This argument indicates that the filter should set PAM_TTY
to the filtered pseudo-terminal.

e non_term- don’t try to set the PAM_TTY item.

6. A reference guide for available modules 31

e runX -

in order that the module can invoke a filter it should know when to invoke it. This argument is
required to tell the filter when to do this. The arguments that follow this one are respectively
the full pathname of the filter to be run and any command line arguments that the filter might
expect.

Permitted values for X are 1 and 2. These indicate the precise time that the filter is to be run. To
understand this concept it will be useful to have read the Linux-PAM Module developer’s guide.
Basically, for each management group there are up to two ways of calling the module’s functions.
In the case of the authentication and session components there are actually two separate func-
tions. For the case of authentication, these functions are _authenticate and _setcred — here
runl means run the filter from the _authenticate function and run2 means run the filter from
_setcred. In the case of the session modules, runl implies that the filter is invoked at the

_open_session stage, and run2 for _close_session.
For the case of the account component. Either runl or run2 may be used.

For the case of the password component, runi is used to indicate that the filter is run on the first
occasion _chauthtok is run (the PAM_PRELIM_CHECK phase) and run2 is used to indicate that the
filter is run on the second occasion (the PAM_UPDATE_AUTHTOK phase).

Examples/suggested usage:

At the time of writing there is little real use to be made of this module. For fun you might try adding
the following line to your login’s configuration entries

#
An example to see how to configure login to transpose upper and
lower case letters once the user has logged in(!)
#
login session required pam_filter.so \
runl /usr/sbin/pam_filter/upperLOWER

6.7 Anonymous access module

6.7.1 Synopsis

Module Name:

pam_ftp.so

Author:

Andrew G. Morgan <morgan@kernel.org>

Maintainer:

Author.

Management groups provided:

authentication
Cryptographically sensitive:

Security rating:

6. A reference guide for available modules 32

Clean code base:
System dependencies:

Network aware:

prompts for email address of user; easily spoofed (XXX - needs work)

6.7.2 Overview of module

The purpose of this module is to provide a pluggable anonymous ftp mode of access.

6.7.3 Authentication component

Recognized arguments:

debug; users=XXX,YYY,...; ignore

Description:

This module intercepts the user’s name and password. If the name is “ftp” or “anonymous”, the user’s
password is broken up at the ‘@’ delimiter into a PAM_RUSER and a PAM_RHOST part; these pam-items
being set accordingly. The username (PAM_USER) is set to “ftp”. In this case the module succeeds.
Alternatively, the module sets the PAM_AUTHTOK item with the entered password and fails.

The behavior of the module can be modified with the following flags:

e debug - log more information to with syslog(3).

e users=XXX,YYY,... - instead of “ftp” or “anonymous”, provide anonymous login to the comma
separated list of users; “XXX,YYY,...”. Should the applicant enter one of these usernames the
returned username is set to the first in the list; “XXX”.

e ignore - pay no attention to the email address of the user (if supplied).

Examples/suggested usage:

An example of the use of this module is provided in the configuration file section 4 (above). With care,
this module could be used to provide new/temporary account anonymous login.

6.8 The group access module

6.8.1 Synopsis
Module Name:
pam_group
Author:
Andrew G. Morgan <morgan@kernel.org>

Maintainer:

Author.

6. A reference guide for available modules 33

Management groups provided:

authentication
Cryptographically sensitive:

Security rating:

Sensitive to setgid status of file-systems accessible to users.
Clean code base:

System dependencies:

Requires an /etc/security/group.conf file. Can be compiled with or without 1ibpwdb.

Network aware:

Only through correctly set PAM_TTY item.

6.8.2 Overview of module

This module provides group-settings based on the user’s name and the terminal they are requesting a given
service from. It takes note of the time of day.

6.8.3 Authentication component

Recognized arguments:

Description:

This module does not authenticate the user, but instead it grants group memberships (in the credential
setting phase of the authentication module) to the user. Such memberships are based on the service they
are applying for. The group memberships are listed in text form in the /etc/security/group.conf
file.

Examples/suggested usage:

For this module to function correctly there must be a correctly formatted /etc/security/groups.conf
file present. The format of this file is as follows. Group memberships are given based on the service
application satisfying any combination of lines in the configuration file. Each line (barring comments
which are preceded by ‘#’ marks) has the following syntax:

services 5 ttys 5 users 5 times 5 groups

Here the first four fields share the syntax of the pam_time configuration file;
/etc/security/pam_time.conf, and the last field, the groups field, is a comma (or space)
separated list of the text-names of a selection of groups. If the users application for service satisfies
the first four fields, the user is granted membership of the listed groups.

As stated in above this module’s usefulness relies on the file-systems accessible to the user. The point
being that once granted the membership of a group, the user may attempt to create a setgid binary
with a restricted group ownership. Later, when the user is not given membership to this group, they
can recover group membership with the precompiled binary. The reason that the file-systems that the
user has access to are so significant, is the fact that when a system is mounted nosuid the user is unable

6. A reference guide for available modules 34

to create or execute such a binary file. For this module to provide any level of security, all file-systems
that the user has write access to should be mounted nosuid.

The pam_group module fuctions in parallel with the /etc/group file. If the user is granted any groups
based on the behavior of this module, they are granted in addition to those entries /etc/group (or
equivalent).

6.9 Add issue file to user prompt

6.9.1 Synopsis
Module Name:
pam_issue

Author:

Ben Collins <bcollins@debian.org>

Maintainer:

Author

Management groups provided:

Authentication (pam_sm _authenticate)
Cryptographically sensitive:
Security rating:
Clean code base:
System dependencies:

Network aware:

6.9.2 Overview of module

This module prepends the issue file (/etc/issue by default) when prompting for a username.

6.9.3 Authentication component

Recognized arguments:

issue=issue-file-name; noesc;

Description:

This module allows you to prepend an issue file to the username prompt. It also by default parses
escape codes in the issue file similar to some common getty’s (using \x format).

Recognized escapes:

e d - current date

e s - operating system name

6. A reference guide for available modules

35

1 - name of this tty

e n - hostname of this system

e o - domainname of this system

e r - release number of the operation system (eg. 2.2.12)

e t - current time

e u - number of users currently logged in

e U - same as u, except it is suffixed with "user" or "users" (eg. "1 user" or "10 users"

m - architecture of this system (1686, sparc, powerpc, ...)

e v - version/build-date of the operating system (eg. "#3 Mon Aug 23 14:38:16 EDT 1999" on

Linux).

The behavior of this module can be modified with one of the following flags:

e issue - the file to output if not using the default

e noesc - turns off escape code parsing

Examples/suggested usage:

login auth pam _issue.so issue=/etc/issue

6.10 The Kerberos 4 module.
6.10.1 Synopsis
Module Name:

pam_krb4

Author:

Derrick J. Brashear <shadow@dementia.org>

Maintainer:

Author.

Management groups provided:

authentication; password; session

Cryptographically sensitive:
uses API

Security rating:
Clean code base:

System dependencies:

libraries - 1ibkrb, libdes, 1ibcom_err, libkadm; and a set of Kerberos include files.

Network aware:

Gets Kerberos ticket granting ticket via a Kerberos key distribution center reached via the network.

6. A reference guide for available modules 36

6.10.2 Overview of module

This module provides an interface for doing Kerberos verification of a user’s password, getting the user a
Kerberos ticket granting ticket for use with the Kerberos ticket granting service, destroying the user’s tickets
at logout time, and changing a Kerberos password.

6.10.3 Session component

Recognized arguments:

Description:
This component of the module currently sets the user’s KRBTKFILE environment variable (although
there is currently no way to export this), as well as deleting the user’s ticket file upon logout (until
PAM_CRED_DELETE is supported by login).

Examples/suggested usage:

This part of the module won’t be terribly useful until we can change the environment from within a
Linux-PAM module.

6.10.4 Password component

Recognized arguments:

use_first_pass; try_first_pass

Description:

This component of the module changes a user’s Kerberos password by first getting and using the user’s
old password to get a session key for the password changing service, then sending a new password to
that service.

Examples/suggested usage:

This should only be used with a real Kerberos v4 kadmind. It cannot be used with an AFS kaserver
unless special provisions are made. Contact the module author for more information.

6.10.5 Authentication component

Recognized arguments:

use_first_pass; try_first_pass

Description:

This component of the module verifies a user’s Kerberos password by requesting a ticket granting ticket
from the Kerberos server and optionally using it to attempt to retrieve the local computer’s host key
and verifying using the key file on the local machine if one exists.

It also writes out a ticket file for the user to use later, and deletes the ticket file upon logout (not until
PAM_CRED_DELETE is called from login).

6. A reference guide for available modules

37

Examples/suggested usage:

This module can be used with a real Kerberos server using MIT v4 Kerberos keys. The module or the
system Kerberos libraries may be modified to support AFS style Kerberos keys. Currently this is not

supported to avoid cryptography constraints.

6.11 The last login module

6.11.1 Synopsis
Module Name:
pam_lastlog

Author:

Andrew G. Morgan <morgan@kernel.org>

Maintainer:

Author

Management groups provided:

auth
Cryptographically sensitive:
Security rating:
Clean code base:

System dependencies:

uses information contained in the /var/log/lastlog file.

Network aware:

6.11.2 Overview of module

This session module maintains the /var/log/lastlog file.

Adding an open entry when called via the

pam_open_seesion() function and completing it when pam_close_session() is called. This module can

also display a line of information about the last login of the user. If an application already performs these

tasks, it is not necessary to use this module.

6.11.3 Session component

Recognized arguments:

debug; nodate; noterm; nohost; silent; never

Description:

This module can be used to provide a “Last login on ...
system from what ever application uses the PAM libraries.

/var/log/lastlog file.

message. when the user logs into the
In addition, the module maintains the

The behavior of this module can be modified with one of the following flags:

6. A reference guide for available modules 38

e debug - write more information to syslog(3).

e nodate - neglect to give the date of the last login when displaying information about the last
login on the system.

e noterm - neglect to diplay the terminal name on which the last login was attempt.
e nohost - neglect to indicate from which host the last login was attempted.

e silent - neglect to inform the user about any previous login: just update the /var/log/lastlog
file.

e never - if the /var/log/lastlog file does not contain any old entries for the user, indicate that
the user has never previously logged in with a “welcome..." message.

Examples/suggested usage:

This module can be used to indicate that the user has new mail when they login to the system. Here
is a sample entry for your /etc/pam.d/XXX file:

#

When were we last here?

#

session optional pam_lastlog.so

Note, some applications may perform this function themselves. In such cases, this module is not
necessary.

6.12 The resource limits module

6.12.1 Synopsis
Module Name:
pam_limits

Authors:

Cristian Gafton <gafton@redhat.com>
Thanks are also due to Elliot Lee <sopwith@redhat.com> for his comments on improving this module.

Maintainer:

Cristian Gafton - 1996,/11/20

Management groups provided:

session
Cryptographically sensitive:
Security rating:
Clean code base:

System dependencies:

requires an /etc/security/limits.conf file and kernel support for resource limits. Also uses the
library, 1ibpwdb.

Network aware:

6. A reference guide for available modules 39

6.12.2 Overview of module

This module, through the Linux-PAM open-session hook, sets limits on the system resources that can be
obtained in a user-session. Its actions are dictated more explicitly through the configuration file discussed
below.

6.12.3 Session component

Recognized arguments:

debug; conf=/path/to/file.conf; change_uid; utmp_early

Description:

Through the contents of the configuration file, /etc/security/limits. conf, resource limits are placed
on users’ sessions. Users of uid=0 are not affected by this restriction.

The behavior of this module can be modified with the following arguments:

e debug - verbose logging to syslog(3).
e conf=/path/to/file.conf - indicate an alternative limits configuration file to the default.

e change_uid - change real uid to the user for who the limits are set up. Use this option if you have
problems like login not forking a shell for user who has no processes. Be warned that something
else may break when you do this.

e utmp_early - some broken applications actually allocate a utmp entry for the user before the
user is admitted to the system. If some of the services you are configuring PAM for do this, you
can selectively use this module argument to compensate for this behavior and at the same time
maintain system-wide consistency with a single limits.conf file.

Examples/suggested usage:

In order to use this module the system administrator must first create a root-only-readable file (default
is /etc/security/limits.conf). This file describes the resource limits the superuser wishes to impose
on users and groups. No limits are imposed on uid=0 accounts.

Each line of the configuration file describes a limit for a user in the form:
<domain> <type> <item> <value>

The fields listed above should be filled as follows...
<domain> can be:

e a username

e a groupname, with @group syntax

e the wild-card *, for default entry

e the wild-card %, for maxlogins limit only, can also be used with %group syntax
<type> can have the three values:

e hard for enforcing hard resource limits. These limits are set by the superuser and enforced by the
Linux Kernel. The user cannot raise his requirement of system resources above such values.

6. A reference guide for available modules 40

e soft for enforcing soft resource limits. These limits are ones that the user can move up or down
within the permitted range by any pre-exisiting hard limits. The values specified with this token
can be thought of as default values, for normal system usage.

e - for enforcing both soft and hard limits together.
<item> can be one of the following:

e core - limits the core file size (KB)

e data - max data size (KB)

e fsize - maximum filesize (KB)

e memlock - max locked-in-memory address space (KB)

e nofile - max number of open files

e rss - max resident set size (KB)

e stack - max stack size (KB)

e cpu - max CPU time (MIN)

e nproc - max number of processes

e as - address space limit

e maxlogins - max number of logins for this user

e maxsyslogins - max number of logins on system

e priority - the priority to run user process with (negative values boost process priority)

e locks - max locked files (Linux 2.4 and higher)
Note, if you specify a type of “-” but neglect to supply the item and value fields then the module will
never enforce any limits on the corresponding user/group-members etc. . Note, the first entry of the

form which applies to the authenticating user will override all other entries in the limits configuration
file. In such cases, the pam_limits module will always return PAM_SUCCESS.

In general, individual limits have priority over group limits, so if you impose no limits for admin group,
but one of the members in this group have a limits line, the user will have its limits set according to
this line.

Also, please note that all limit settings are set per login. They are not global, nor are they permanent;
existing only for the duration of the session.

In the limits configuration file, the “#” character introduces a comment - after which the rest of the
line is ignored.

The pam_limits module does its best to report configuration problems found in its configuration file
via syslog(3).

The following is an example configuration file:

EXAMPLE /etc/security/limits.conf file:

#

<domain> <type> <item> <value>
* soft core 0

* hard rss 10000
@student hard nproc 20

@faculty soft nproc 20

6. A reference guide for available modules 41

@faculty hard nproc 50
ftp hard nproc 0
@student - maxlogins 4

Note, the use of soft and hard limits for the same resource (see @faculty) — this establishes the
default and permitted extreme level of resources that the user can obtain in a given service-session.

Note, that wild-cards * and % have the following meaning when used for maxlogins limit

® * every user

e % all users, or entire group when Y%group is specified
See the following examples:

EXAMPLE /etc/security/limits.conf file:

<domain> <type> <item> <value>
* - maxlogins 2
Qfaculty - maxlogins 4

% - maxlogins 30
%student - maxlogins 10

Explanation: every user can login 2 times, members of the faculty group can login 4 times, there can
be only 30 logins, only 10 from students group.

For the services that need resources limits (login for example) put the following line in /etc/pam.conf
as the last line for that service (usually after the pam unix session line:

#

Resource limits imposed on login sessions via pam_limits
#

login session required pam_limits.so

6.13 The list-file module

6.13.1 Synopsis
Module Name:
pam_listfile
Author:
Elliot Lee <sopwith@cuc.edu>

Maintainer:

Red Hat Software:
Michael K. Johnson <johnsonm@redhat.com> 1996,/11/18
(if unavailable, contact Elliot Lee <sopwith@cuc.edu>).

Management groups provided:

authentication
Cryptographically sensitive:

Security rating:

6. A reference guide for available modules 42

Clean code base:

clean
System dependencies:

Network aware:

6.13.2 Overview of module

The list-file module provides a way to deny or allow services based on an arbitrary file.

6.13.3 Authentication component

Recognized arguments:

onerr=succeed|fail; sense=allow|deny; file=filename; item=user|tty|rhost|ruser|group|shell

apply=user|@group

Description:

The module gets the item of the type specified — user specifies the username, PAM_USER; tty specifies
the name of the terminal over which the request has been made, PAM_TTY; rhost specifies the name
of the remote host (if any) from which the request was made, PAM_RHOST; and ruser specifies the
name of the remote user (if available) who made the request, PAM_RUSER — and looks for an instance
of that item in the file filename. filename contains one line per item listed. If the item is found,
then if sense=allow, PAM_SUCCESS is returned, causing the authorization request to succeed; else if
sense=deny, PAM_AUTH_ERR is returned, causing the authorization request to fail.

If an error is encountered (for instance, if filename does not exist, or a poorly-constructed argu-
ment is encountered), then if onerr=succeed, PAM_SUCCESS is returned, otherwise if onerr=fail,
PAM_AUTH_ERR or PAM_SERVICE_ERR (as appropriate) will be returned.

An additional argument, apply=, can be used to restrict the application of the above to a specific user
(apply=username) or a given group (apply=Q@groupname). This added restriction is only meaningful
when used with the tty, rhost and shell items.

Besides this last one, all arguments should be specified; do not count on any default behavior, as it is
subject to change.

No credentials are awarded by this module.

Examples/suggested usage:

Classic “ftpusers” authentication can be implemented with this entry in /etc/pam. conf:

#

deny ftp-access to users listed in the /etc/ftpusers file
#

ftp auth required pam_listfile.so \

onerr=succeed item=user sense=deny fi1e=/etc/ftpusers

Note, users listed in /etc/ftpusers file are (counterintuitively) not allowed access to the ftp service.

To allow login access only for certain users, you can use a pam.conf entry like this:

6. A reference guide for available modules

43

#
permit login to users listed in /etc/loginusers
#
login auth required pam_listfile.so \

onerr=fail item=user sense=allow file=/etc/loginusers

For this example to work, all users who are allowed to use the login service should be listed in the file

/etc/loginusers. Unless you are explicitly trying to lock out root, make sure that when you do this,

you leave a way for root to log in, either by listing root in /etc/loginusers, or by listing a user who

is able to su to the root account.

6.14 The mail module

6.14.1 Synopsis

Module Name:

pam_mail

Author:

Andrew G. Morgan <morgan@kernel.org>

Maintainer:

Author

Management groups provided:

Authentication (credential) Session (open)
Cryptographically sensitive:
Security rating:
Clean code base:

System dependencies:

Default mail directory /var/spool/mail/

Network aware:

6.14.2 Overview of module

This module looks at the user’s mail directory and indicates whether the user has any mail in it.

6.14.3 Session component

Recognized arguments:

debug; dir=directory-name; nopen; close; noenv; empty; hash=hashcount; standard; quiet;

6. A reference guide for available modules 44

Description:

This module provides the “you have new mail” service to the user. It can be plugged into any application
that has credential hooks. It gives a single message indicating the newness of any mail it finds in the
user’s mail folder. This module also sets the Linux-PAM environment variable, MAIL, to the user’s
mail directory.

The behavior of this module can be modified with one of the following flags:

e debug - write more information to syslog(3).

e dir=pathname - look for the users’ mail in an alternative directory given by pathname. The
default location for mail is /var/spool/mail. Note, if the supplied pathname is prefixed by a *~’,
the directory is interpreted as indicating a file in the user’s home directory.

e nopen - instruct the module to not print any mail information when the user’s credentials are
acquired. This flag is useful to get the MAIL environment variable set, but to not display any
information about it.

e close - instruct the module to indicate if the user has any mail at the as the user’s credentials
are revoked.

e noenv - do not set the MAIL environment variable.
e empty - indicate that the user’s mail directory is empty if this is found to be the case.

e hash=hashcount - mail directory hash depth. For example, a hashcount of 2 would make the
mailfile be /var/spool/mail/u/s/user.

e standard - old style "You have..." format which doesn’t show the mail spool being used. this also
implies "empty"

e quiet - only report when there is new mail.

Examples/suggested usage:

This module can be used to indicate that the user has new mail when they login to the system. Here
is a sample entry for your /etc/pam.conf file:

#

do we have any mail?

#

login session optional pam_mail.so

Note, if the mail spool file (be it /var/spool/mail/$USER or a pathname given with the dir= param-
eter) is a directory then pam_mail assumes it is in the Qmail Maildir format.

Note, some applications may perform this function themselves. In such cases, this module is not
necessary.

6.14.4 Authentication component

Then authentication companent works the same as the session component, except that everything is done
during the pam_setcred () phase.

6. A reference guide for available modules 45

6.15 Create home directories on initial login

6.15.1 Synopsis

Module Name:

pam_mkhomedir

Author:

Jason Gunthorpe <jgg@ualberta.ca>

Maintainer:

Ben Collins <bcollins@debian.org>

Management groups provided:

Session
Cryptographically sensitive:
Security rating:

Clean code base:
System dependencies:

Network aware:

6.15.2 Overview of module

Creates home directories on the fly for authenticated users.

6.15.3 Session component

Recognized arguments:

debug; skel=skeleton-dir; umask=octal-umask;

Description:

This module is useful for distributed systems where the user account is managed in a central database
(such as NIS, NIS+, or LDAP) and accessed through miltiple systems. It frees the administrator from
having to create a default home directory on each of the systems by creating it upon the first succesfully
authenticated login of that user. The skeleton directory (usually /etc/skel/) is used to copy default
files and also set’s a umask for the creation.

The behavior of this module can be modified with one of the following flags:

e skel - The skeleton directory for default files to copy to the new home directory.

e umask - An octal for of the same format as you would pass to the shells umask command.

Examples/suggested usage:

session required pam_ mkhomedir.so skel=/etc/skel/ umask=0022

6. A reference guide for available modules

46

6.16 Output the motd file
6.16.1 Synopsis
Module Name:

pam_motd

Author:
Ben Collins <bcollins@debian.org>

Maintainer:

Author

Management groups provided:

Session (open)
Cryptographically sensitive:
Security rating:

Clean code base:
System dependencies:

Network aware:

6.16.2 Overview of module

This module outputs the motd file (/etc/motd by default) upon successful login.

6.16.3 Session component

Recognized arguments:

debug; motd=motd-file-name;

Description:

This module allows you to have arbitrary motd’s (message of the day) output after a succesful login.

By default this file is /etc/motd, but is configurable to any file.

The behavior of this module can be modified with one of the following flags:

e motd - the file to output if not using the default.

Examples/suggested usage:

login session pam _motd.so motd=/etc/motd

6. A reference guide for available modules 47

6.17 The no-login module

6.17.1 Synopsis
Module Name:
pam_nologin

Author:
Written by Michael K. Johnson <johnsonm@redhat.com>

Maintainer:

Management groups provided:

account; authentication
Cryptographically sensitive:
Security rating:
Clean code base:
System dependencies:

Network aware:

6.17.2 Overview of module

Provides standard Unix nologin authentication.

6.17.3 Authentication component

Recognized arguments:

successok, file=<filename>

Description:

Provides standard Unix nologin authentication. If the file /etc/nologin exists, only root is allowed
to log in; other users are turned away with an error message (and the module returns PAM_AUTH_ERR
or PAM_USER_UNKNOWN). All users (root or otherwise) are shown the contents of /etc/nologin.

If the file /etc/nologin does not exist, this module defaults to returning PAM_IGNORE, but the
successok module argument causes it to return PAM_SUCCESS in this case.

The administrator can override the default nologin file with the file=pathname module argument.

Examples/suggested usage:

In order to make this module effective, all login methods should be secured by it. It should be used
as a required method listed before any sufficient methods in order to get standard Unix nologin
semantics. Note, the use of successok module argument causes the module to return PAM_SUCCESS
and as such would break such a configuration - failing sufficient modules would lead to a successful
login because the nologin module succeeded.

6. A reference guide for available modules

48

6.18 The promiscuous module

6.18.1 Synopsis
Module Name:
pam_ permit

Author:
Andrew G. Morgan, <morgan@kernel.org>

Maintainer:

Linux-PAM maintainer.

Management groups provided:

account; authentication; password; session
Cryptographically sensitive:

Security rating:

VERY LOW. Use with extreme caution.

Clean code base:

Clean.
System dependencies:

Network aware:

6.18.2 Overview of module

This module is very dangerous. It should be used with extreme caution. Its action is always to permit

access. It does nothing else.

6.18.3 Account+Authentication+Password+Session components

Recognized arguments:

Description:

No matter what management group, the action of this module is to simply return PAM_SUCCESS —

operation successful.

In the case of authentication, the user’s name will be acquired. Many applications become confused if

this name is unknown.

Examples/suggested usage:

It is seldom a good idea to use this module. However, it does have some legitimate uses. For example,

if the system-administrator wishes to turn off the account management on a workstation, and at the

same time continue to allow logins, then she might use the following configuration file entry for login:

6. A reference guide for available modules

49

#

add this line to your other login entries to disable account

management, but continue to permit users to log in...

#

login account required pam_permit.so

6.19 The Password-Database module
6.19.1 Synopsis
Module Name:

pam_pwdb

Author:

Cristian Gafton <gafton@redhat.com>
and Andrew G. Morgan <morgan@kernel.org>

Maintainer:

Red Hat.

Management groups provided:

account; authentication; password; session
Cryptographically sensitive:
Security rating:
Clean code base:

System dependencies:

Requires properly configured 1ibpwdb

Network aware:

6.19.2 Overview of module

This module is a pluggable replacement for the pam_unix_. .

Password Database library 1ibpwdb.

6.19.3 Account component

Recognized arguments:

debug

Description:

modules. It uses the generic interface of the

The debug argument makes the accounting functions of this module syslog(3) more information on

its actions. (Remaining arguments supported by the other functions of this module are silently ignored,

but others are logged as errors through syslog(3)).

6. A reference guide for available modules 50

Based on the following pwdb_elements: expire; last_change; max_change; defer_change;
warn_change, this module performs the task of establishing the status of the user’s account and
password. In the case of the latter, it may offer advice to the user on changing their password or,
through the PAM_AUTHTOKEN_REQD return, delay giving service to the user until they have established a
new password. The entries listed above are documented in the Password Database Library Guide (see
pointer above). Should the user’s record not contain one or more of these entries, the corresponding
shadow check is not performed.

Examples/suggested usage:

In its accounting mode, this module can be inserted as follows:

#

Ensure users account and password are still active
#

login account required pam_pwdb. so

6.19.4 Authentication component

Recognized arguments:

debug; use_first_pass; try_first_pass; nullok; nodelay; likeauth; noreap

Description:

The debug argument makes the authentication functions of this module syslog(3) more information
on its actions.

The default action of this module is to not permit the user access to a service if their official password
is blank. The nullok argument overrides this default.

When given the argument try_first_pass, before prompting the user for their password, the module
first tries the previous stacked auth-module’s password in case that satisfies this module as well. The
argument use_first_pass forces the module to use such a recalled password and will never prompt
the user - if no password is available or the password is not appropriate, the user will be denied access.

The argument, nodelay, can be used to discourage the authentication component from requesting a
delay should the authentication as a whole fail. The default action is for the module to request a
delay-on-failure of the order of one second.

Remaining arguments, supported by the other functions of this module, are silently ignored. Other
arguments are logged as errors through syslog(3).

A helper binary, pwdb_chkpwd, is provided to check the user’s password when it is stored in a read
protected database. This binary is very simple and will only check the password of the user invoking
it. It is called transparently on behalf of the user by the authenticating component of this module. In
this way it is possible for applications like zlock to work without being setuid-root. The module, by
default, will temporarily turn off SIGCHLD handling for the duration of execution of the helper binary.
This is generally the right thing to do, as many applications are not prepared to handle this signal
from a child they didn’t know was fork()d. The noreap module argument can be used to suppress
this temporary shielding and may be needed for use with certain applications.

The likeauth argument makes the module return the same value when called as a credential setting
module and an authentication module. This will help libpam take a sane path through the auth
component of your configuration file.

6. A reference guide for available modules 51

Examples/suggested usage:

The correct functionality of this module is dictated by having an appropriate /etc/pwdb. conf file, the
user databases specified there dictate the source of the authenticated user’s record.

6.19.5 Password component

Recognized arguments:

debug; nullok; not_set_pass; use_authtok; try_first_pass; use_first_pass; md5; bigcrypt;

shadow; radius; unix

Description:

This part of the pam_pwdb module performs the task of updating the user’s password. Thanks to the
flexibility of 1ibpwdb this module is able to move the user’s password from one database to another,
perhaps securing the user’s database entry in a dynamic manner (this is very ALPHA code at the
moment!) - this is the purpose of the shadow, radius and unix arguments.

In the case of conventional unix databases (which store the password encrypted) the md5 argument is
used to do the encryption with the MD5 function as opposed to the conventional crypt(3) call. As an
alternative to this, the bigcrypt argument can be used to encrypt more than the first 8 characters of a
password with DEC’s (Digital Equipment Cooperation) ‘C2’ extension to the standard UNIX crypt ()
algorithm.

The nullok module is used to permit the changing of a password from an empty one. Without this
argument, empty passwords are treated as account-locking ones.

The argument use_first_pass is used to lock the choice of old and new passwords to that dictated
by the previously stacked password module. The try_first_pass argument is used to avoid the user
having to re-enter an old password when pam_pwdb follows a module that possibly shared the user’s
old password - if this old password is not correct the user will be prompted for the correct one. The
argument use_authtok is used to force this module to set the new password to the one provided by
the previously stacked password module (this is used in an example of the stacking of the Cracklib
module documented above).

The not_set_pass argument is used to inform the module that it is not to pay attention to/make
available the old or new passwords from/to other (stacked) password modules.

The debug argument makes the password functions of this module syslog(3) more information on its
actions. Other arguments may be logged as erroneous to syslog(3).
Examples/suggested usage:

An example of the stacking of this module with respect to the pluggable password checking module,
pam_cracklib, is given in that modules section above.

6.19.6 Session component

Recognized arguments:

Description:

No arguments are recognized by this module component. Its action is simply to log the username and
the service-type to syslog(3). Messages are logged at the beginning and end of the user’s session.

6. A reference guide for available modules 52

Examples/suggested usage:

The use of the session modules is straightforward:

#

pwdb - unix like session opening and closing
#

login session required pam_pwdb.so

6.20 The RADIUS session module
6.20.1 Synopsis

Module Name:

pam_radius

Author:
Cristian Gafton <gafton@redhat.com>

Maintainer:

Author.

Management groups provided:

session

Cryptographically sensitive:

This module does not deal with passwords
Security rating:

Clean code base:

gec reports 1 warning when compiling /usr/include/rpc/clnt.h. Hey, is not my fault !
System dependencies:

Network aware:
yes; this is a network module (independent of application).
6.20.2 Overview of module

This module is intended to provide the session service for users authenticated with a RADIUS server. At
the present stage, the only option supported is the use of the RADIUS server as an accounting server.

6.20.3 Session component

Recognized arguments:

debug - verbose logging to syslog(3).

6. A reference guide for available modules 53

Description:

This module is intended to provide the session service for users authenticated with a RADIUS server.
At the present stage, the only option supported is the use of the RADIUS server as an accounting
server.

(There are few things which needs to be cleared out first in the PAM project until one will be able to
use this module and expect it to magically start pppd in response to a RADIUS server command to
use PPP for this user, or to initiate a telnet connection to another host, or to hang and call back the
user using parameters provided in the RADIUS server response. Most of these things are better suited
for the radius login application. I hope to make available Real Soon (tm) patches for the login apps to
make it work this way.)

When opening a session, this module sends an “Accounting-Start” message to the RADIUS server,
which will log/update/whatever a database for this user. On close, an “Accounting-Stop” message is
sent to the RADIUS server.

This module has no other prerequisites for making it work. One can install a RADIUS server just for
fun and use it as a centralized accounting server and forget about wtmp/last/sac etc. .

Examples/suggested usage:

For the services that need this module (login for example) put the following line in /etc/pam. conf as
the last line for that service (usually after the pam _unix session line):

login session required pam_radius.so

Replace login for each service you are using this module.

This module make extensive use of the API provided in libpwdb 0.54preB or later. By default, it
will read the radius server configuration (hostname and secret) from /etc/raddb/server. This is a
default compiled into libpwdb, and curently there is no way to modify this default without recompiling
libpwdb. I am working on extending the radius support from libpwdb to provide a possibility to make
this runtime-configurable.

Also please note that libpwdb will require also the RADIUS dictionary to be present
(/etc/raddb/dictionary).

6.21 The rhosts module
6.21.1 Synopsis

Module Name:

pam_rhosts_auth

Author:

Al Longyear <longyear@netcom.com>
Maintainer:

Management groups provided:

authentication

Cryptographically sensitive:

6. A reference guide for available modules 54

Security rating:

Clean code base:

Clean.
System dependencies:

Network aware:

Standard inet_addr(), gethostbyname () function calls.

6.21.2 Overview of module

This module performs the standard network authentication for services, as used by traditional implementa-
tions of rlogin and rsh etc.

6.21.3 Authentication component

Recognized arguments:

no_hosts_equiv; no_rhosts; debug; no_warn; privategroup; promiscuous; suppress

Description:

The authentication mechanism of this module is based on the contents of two files; /etc/hosts.equiv
(or _PATH_HEQUIV in #include <netdb.h>) and ~/.rhosts. Firstly, hosts listed in the former file
are treated as equivalent to the localhost. Secondly, entries in the user’s own copy of the latter file is
used to map "remote-host remote-user" pairs to that user’s account on the current host. Access is
granted to the user if their host is present in /etc/hosts.equiv and their remote account is identical
to their local one, or if their remote account has an entry in their personal configuration file.

Some restrictions are applied to the attributes of the user’s personal configuration file: it must be a
regular file (as defined by S_ISREG(x) of POSIX.1); it must be owned by the superuser or the user; it
must not be writable by any user besides its owner.

The module authenticates a remote user (internally specified by the item PAM_RUSER) connecting from
the remote host (internally specified by the item PAM_RHOST). Accordingly, for applications to be
compatible this authentication module they must set these items prior to calling pam_authenticate().
The module is not capable of independently probing the network connection for such information.

In the case of root-access, the /etc/host . equiv file is ignored unless the hosts_equiv_rootok option
should be used. Instead, the superuser must have a correctly configured personal configuration file.

The behavior of the module is modified by flags:
e debug - log more information to syslog(3). (XXX - actually, this module does not do any logging
currently, please volunteer to fix this!)

e no_warn - do not give verbal warnings to the user about failures etc. (XXX - this module currently
does not issue any warnings, please volunteer to fix this!)

e no_hosts_equiv - ignore the contents of the /etc/hosts.equiv file.

e hosts_equiv_rootok - allow the use of /etc/hosts.equiv for superuser. Without this option
/etc/hosts.equiv is not consulted for the superuser account. This option has no effect if the
no_hosts_equiv option is used.

6. A reference guide for available modules 55

e no_rhosts - ignore the contents of all user’s personal configuration file “/.rhosts.

e privategroup - normally, the ~/.rhosts file must not be writable by anyone other than its
owner. This option overlooks group write access in the case that the group owner of this file has
the same name as the user being authenticated. To lessen the security problems associated with
this option, the module also checks that the user is the only member of their private group.

e promiscuous - A host entry of ‘4’ will lead to all hosts being granted access. Without this option,
’+” entries will be ignored. Note, that the debug option will syslog a warning in this latter case.

e suppress - This will prevent the module from syslog(3)ing a warning message when this au-
thentication fails. This option is mostly for keeping logs free of meaningless errors, in particular
when the module is used with the sufficient control flag.

Examples/suggested usage:

To allow users to login from trusted remote machines, you should try adding the following line to your
/etc/pan. conf file before the line that would otherwise prompt the user for a password:

#
No passwords required for users from hosts listed above.
#

login auth sufficient pam_rhosts_auth.so no_rhosts

Note, in this example, the system administrator has turned off all personal rhosts configuration
files. Also note, that this module can be used to only allow remote login from hosts specified in
the /etc/host.equiv file, by replacing sufficient in the above example with required.

6.22 The root access module

6.22.1 Synopsis
Module Name:
pam_ rootok

Author:

Andrew G. Morgan <morgan@kernel.org>

Maintainer:

Linux-PAM maintainer

Management groups provided:

authentication
Cryptographically sensitive:
Security rating:

Clean code base:

Clean.
System dependencies:

Network aware:

6. A reference guide for available modules 56

6.22.2 Overview of module

This module is for use in situations where the superuser wishes to gain access to a service without having
to enter a password.

6.22.3 Authentication component

Recognized arguments:

debug

Description:

This module authenticates the user if their uid is 0. Applications that are created setuid-root generally
retain the uid of the user but run with the authority of an enhanced effective-uid. It is the real uid
that is checked.

Examples/suggested usage:

In the case of the su application the historical usage is to permit the superuser to adopt the identity
of a lesser user without the use of a password. To obtain this behavior under Linux-PAM the following
pair of lines are needed for the corresponding entry in the configuration file:

#

su authentication. Root is granted access by default.
#

su auth sufficient pam_rootok.so

su auth required pam_unix_auth.so

Note. For programs that are run by the superuser (or started when the system boots) this module
should not be used to authenticate users.

6.23 The securetty module

6.23.1 Synopsis

Module Name:
pam_securetty
Author][s]:
Elliot Lee <sopwith@cuc.edu>

Maintainer:

Red Hat Software:
currently Michael K. Johnson <johnsonm@redhat.com>
(if unavailable, contact Elliot Lee <sopwith@cuc.edu>).

Management groups provided:

authentication

Cryptographically sensitive:

6. A reference guide for available modules 57

Security rating:
Clean code base:

System dependencies:

/etc/securetty file

Network aware:

Requires the application to fill in the PAM_TTY item correctly in order to act meaningfully.

6.23.2 Overview of module

Provides standard Unix securetty checking.

6.23.3 Authentication component

Recognized arguments:

Description:

Provides standard Unix securetty checking, which causes authentication for root to fail unless PAM_TTY
is set to a string listed in the /etc/securetty file. For all other users, it succeeds.

Examples/suggested usage:

For canonical usage, should be listed as a required authentication method before any sufficient
authentication methods.

6.24 The login counter (tallying) module

6.24.1 Synopsis

Module Name:
pam_tally

Author][s]:

Tim Baverstock
Maintainer:

Management groups provided:

auth; account
Cryptographically sensitive:
Security rating:
Clean code base:

System dependencies:

A faillog file (default location /var/log/faillog)

Network aware:

6. A reference guide for available modules 58

6.24.2 Overview of module

This module maintains a count of attempted accesses, can reset count on success, can deny access if too
many attempts fail.

pam_tally comes in two parts: pam_tally.so and pam_tally. The former is the PAM module and the
latter, a stand-alone program. pam_tally is an (optional) application which can be used to interrogate and
manipulate the counter file. It can display users’ counts, set individual counts, or clear all counts. Setting
artificially high counts may be useful for blocking users without changing their passwords. For example, one
might find it useful to clear all counts every midnight from a cron job.

The counts file is organized as a binary-word array, indexed by uid. You can probably make sense of it with
od, if you don’t want to use the supplied appliction.

Note, there are some outstanding issues with this module: pam_tally is very dependant on getpw*() -
a database of usernames would be much more flexible; the ‘keep a count of current logins’ bit has been
#ifdef’d out and you can only reset the counter on successful authentication, for now.

Generic options accepted by both components

e onerr=(succeed|fail): if something weird happens, such as unable to open the file, how should the
module react?

e file=/where/to/keep/counts: specify the file location for the counts. The default location is
/var/log/faillog.

6.24.3 Authentication component

Recognized arguments:

onerr=(succeed|fail); file=/where/to/keep/counts; no_magic_root

Description:

The authentication component of this module increments the attempted login counter.

Examples/suggested usage:

The module argument no_magic_root is used to indicate that if the module is invoked by a user with
uid=0, then the counter is incremented. The sys-admin should use this for daemon-launched services,
like telnet/rsh/login. For user launched services, like su, this argument should be omitted.

By way of more explanation, when a process already running as root tries to access some service, the
access is magic, and bypasses pam_tally’s checks: this is handy for suing from root into an account
otherwise blocked. However, for services like telnet or login, which always effectively run from the
root account, root (ie everyone) shouldn’t be granted this magic status, and the flag ‘no_magic_root’
should be set in this situation, as noted in the summary above.

6.24.4 Account component

Recognized arguments:

onerr=(succeed|fail); file=/where/to/keep/counts; deny=n; no_magic_root;
even_deny_root_account; reset; no_reset; per_user; no_lock_time

6. A reference guide for available modules 59

Description:
The account component can deny access and/or reset the attempts counter. It also checks to make
sure that the counts file is a plain file and not world writable.

Examples/suggested usage:

The deny=n option is used to deny access if tally for this user exceeds n. The presence of deny=n
changes the default for reset/no_reset to reset, unless the user trying to gain access is root and the
no_magic_root option has NOT been specified.

The no_magic_root option ensures that access attempts by root DON’T ignore deny. Use this for
daemon-based stuff, like telnet/rsh/login.

The even_deny_root_account option is used to ensure that the root account can become unavailable.
Note that magic root trying to gain root bypasses this, but normal users can be locked out.

The reset option instructs the module to reset count to 0 on successful entry, even for magic root.
The no_reset option is used to instruct the module to not reset the count on successful entry. This is
the default unless deny exists and the user attempting access is NOT magic root.

If /var/log/faillog contains a non-zero .fail_max field for this user then the per_user module
argument will ensure that the module uses this value and not the global deny=n parameter.

The no_lock_time option is for ensuring that the module does not use the .fail_locktime field in
/var /log /faillog for this user.

Normally, failed attempts to access root will NOT cause the root account to become blocked, to
prevent denial-of-service: if your users aren’t given shell accounts and root may only login via su or at
the machine console (not telnet/rsh, etc), this is safe. If you really want root to be blocked for some

given service, use even_deny_root_account.

6.25 Time control

6.25.1 Synopsis
Module Name:
pam_time

Author:

Andrew G. Morgan <morgan@kernel.org>

Maintainer:

Author

Management groups provided:

account
Cryptographically sensitive:
Security rating:

Clean code base:

6. A reference guide for available modules 60

System dependencies:

Requires a configuration file /etc/security/time.conf

Network aware:

Through the PAM_TTY item only

6.25.2 Overview of module

Running a well regulated system occasionally involves restricting access to certain services in a selective
manner. This module offers some time control for access to services offered by a system. Its actions are
determined with a configuration file. This module can be configured to deny access to (individual) users
based on their name, the time of day, the day of week, the service they are applying for and their terminal
from which they are making their request.

6.25.3 Account component

Recognized arguments:

Description:

This module bases its actions on the rules listed in its configuration file: /etc/security/time.conf.
Each rule has the following form,

services ;ttys ;users ;times

In words, each rule occupies a line, terminated with a newline or the beginning of a comment; a ‘#’. It
contains four fields separated with semicolons, ‘;’. The fields are as follows:

e services - a logic list of service names that are affected by this rule.
e ttys - a logic list of terminal names indicating those terminals covered by the rule.

e user - a logic list of usernames to which this rule applies
By a logic list we mean a sequence of tokens (associated with the appropriate PAM_ item), contain-

‘*’_ and optionally prefixed with a negation operator;

ing no more than one wildcard character;
‘1. Such a sequence is concatenated with one of two logical operators: & (logical AND) and |
(logical OR). Two examples are: !'morgan&!root, indicating that this rule does not apply to the
user morgan nor to root; and tty*&!ttyp*, which indicates that the rule applies only to console

terminals but not pseudoterminals.

e times - a logic list of times at which this rule applies. The format of each element is a day/time-
range. The days are specified by a sequence of two character entries. For example, MoTuSa,
indicates Monday Tuesday and Saturday. Note that repeated days are unset; MoTuMo indicates
Tuesday, and MoWk means all weekdays bar Monday. The two character combinations accepted
are,

Mo Tu We Th Fr Sa Su Wk Wd Al

The last two of these being weekend days and all 7 days of the week respectively.

The time range part is a pair of 24-hour times, HHMM , separated by a hyphen — indicating the
start and finish time for the rule. If the finsish time is smaller than the start time, it is assumed
to apply on the following day. For an example, Mo1800-0300 indicates that the permitted times
are Monday night from 6pm to 3am the following morning.

6. A reference guide for available modules 61

Note, that the given time restriction is only applied when the first three fields are satisfied by a user’s
application for service.

For convenience and readability a rule can be extended beyond a single line with a ‘\newline’.

Examples/suggested usage:

The use of this module is initiated with an entry in the Linux-PAM configuration file of the following

type:
#
apply pam_time accounting to login requests
#
login account required pam_time.so

where, here we are applying the module to the login application.

Some examples of rules that can be placed in the /etc/security/time.conf configuration file are the
following;:

login ; tty* & !ttyp* ; !root ; !'A10000-2400
all users except for root are denied access to console-login at all times.

games ; * ; !waster ; Wd0000-2400 | Wk1800-0800

games (configured to use Linux-PAM) are only to be accessed out of working hours. This rule
does not apply to the user waster.

Note, currently there is no daemon enforcing the end of a session. This needs to be remedied.

Poorly formatted rules are logged as errors using syslog(3).

6.26 The Unix Password module
6.26.1 Synopsis

Module Name:
pam_ unix
Author:

Maintainer:

Management groups provided:

account; authentication; password; session
Cryptographically sensitive:
Security rating:
Clean code base:
System dependencies:

Network aware:

6. A reference guide for available modules 62

6.26.2 Overview of module

This is the standard Unix authentication module. It uses standard calls from the system’s libraries to retrieve
and set account information as well as authentication. Usually this is obtained from the /etc/passwd and
the /etc/shadow file as well if shadow is enabled.

6.26.3 Account component

Recognized arguments:

debug; audit

Description:

The debug argument makes the accounting functions of this module syslog(3) more information on
its actions. (Remaining arguments supported by the other functions of this module are silently ignored,
but others are logged as errors through syslog(3)). The audit argument causes even more logging.

Based on the following shadow elements: expire; last_change; max_change; min_change;
warn_change, this module performs the task of establishing the status of the user’s account and pass-
word. In the case of the latter, it may offer advice to the user on changing their password or, through
the PAM_AUTHTOKEN_REQD return, delay giving service to the user until they have established a new
password. The entries listed above are documented in the GNU Libc info documents. Should the user’s
record not contain one or more of these entries, the corresponding shadow check is not performed.

Examples/suggested usage:

In its accounting mode, this module can be inserted as follows:

#

Ensure users account and password are still active
#

login account required pam_unix.so

6.26.4 Authentication component

Recognized arguments:

debug; audit; use_first_pass; try_first_pass; nullok; nodelay; noreap

Description:

The debug argument makes the authentication functions of this module syslog(3) more information
on its actions. The audit causes even more information to be logged.

The default action of this module is to not permit the user access to a service if their official password
is blank. The nullok argument overrides this default.

When given the argument try_first_pass, before prompting the user for their password, the module
first tries the previous stacked auth-module’s password in case that satisfies this module as well. The
argument use_first_pass forces the module to use such a recalled password and will never prompt
the user - if no password is available or the password is not appropriate, the user will be denied access.

The argument, nodelay, can be used to discourage the authentication component from requesting a
delay should the authentication as a whole fail. The default action is for the module to request a
delay-on-failure of the order of one second.

6. A reference guide for available modules 63

A helper binary, unix_chkpwd, is provided to check the user’s password when it is stored in a read
protected database. This binary is very simple and will only check the password of the user invoking
it. It is called transparently on behalf of the user by the authenticating component of this module. In
this way it is possible for applications like zlock to work without being setuid-root. The module, by
default, will temporarily turn off SIGCHLD handling for the duration of execution of the helper binary.
This is generally the right thing to do, as many applications are not prepared to handle this signal
from a child they didn’t know was fork()d. The noreap module argument can be used to suppress
this temporary shielding and may be needed for use with certain applications.

Remaining arguments, supported by the other functions of this module, are silently ignored. Other
arguments are logged as errors through syslog(3).
Examples/suggested usage:

The correct functionality of this module is dictated by having an appropriate /etc/nsswitch.conf
file, the user databases specified there dictate the source of the authenticated user’s record.

In its authentication mode, this module can be inserted as follows:

#

Authenticate the user

#

login auth required pam_unix.so

6.26.5 Password component

Recognized arguments:

debug; audit; nullok; not_set_pass; use_authtok; try_first_pass; use_first_pass; mdb;

bigcrypt; shadow; nis; remember

Description:
This part of the pam_unix module performs the task of updating the user’s password.

In the case of conventional unix databases (which store the password encrypted) the md5 argument is
used to do the encryption with the MD5 function as opposed to the conventional crypt (3) call. As an
alternative to this, the bigcrypt argument can be used to encrypt more than the first 8 characters of a
password with DEC’s (Digital Equipment Cooperation) ‘C2’ extension to the standard UNIX crypt ()
algorithm.

The nullok argument is used to permit the changing of a password from an empty one. Without this
argument, empty passwords are treated as account-locking ones.

The argument use_first_pass is used to lock the choice of old and new passwords to that dictated
by the previously stacked password module. The try_first_pass argument is used to avoid the user
having to re-enter an old password when pam_unix follows a module that possibly shared the user’s
old password - if this old password is not correct the user will be prompted for the correct one. The
argument use_authtok is used to force this module to set the new password to the one provided by
the previously stacked password module (this is used in an example of the stacking of the Cracklib
module documented above).

The not_set_pass argument is used to inform the module that it is not to pay attention to/make
available the old or new passwords from/to other (stacked) password modules.

6. A reference guide for available modules 64

The debug argument makes the password functions of this module syslog(3) more information on
its actions. Other arguments may be logged as erroneous to syslog(3). The audit argument causes
even more information to be logged.

With the nis argument, pam_unix will attempt to use NIS RPC for setting new passwords.
The remember argument takes one value. This is the number of most recent passwords to save for each
user. These are saved in /etc/security/opasswd in order to force password change history and keep
the user from alternating between the same password too frequently.

Examples/suggested usage:

Standard usage:

#
Change the users password
#

passwd password required pam_unix.so

An example of the stacking of this module with respect to the pluggable password checking module,

pam_cracklib:

#

Change the users password

#

passwd password required pam_cracklib.so retry=3 minlen=6 difok=3

passwd password required pam_unix.so use_authtok nullok md5

6.26.6 Session component

Recognized arguments:

Description:
No arguments are recognized by this module component. Its action is simply to log the username and
the service-type to syslog(3). Messages are logged at the beginning and end of the user’s session.
Examples/suggested usage:

The use of the session modules is straightforward:

#

session opening and closing

#

login session required pam_unix.so

6.27 The userdb module

6.27.1 Synopsis
Module Name:
pam_userdb

Author:
Cristian Gafton <gafton@redhat.com>

6. A reference guide for available modules 65

Maintainer:

Author.

Management groups provided:

authentication

Cryptographically sensitive:

Security rating:

Clean code base:

System dependencies:

Requires Berkeley DB.

Network aware:

6.27.2 Overview of module

Look up users in a .db database and verify their password against what is contained in that database.

6.27.3 Authentication component

Recognized arguments:

debug; icase; dump; db=XXXX; use_authtok; unknown_ok;

Description:

This module is used to verify a username/password pair against values stored in a Berkeley DB

database. The database is indexed by the username, and the data fields corresponding to the username

keys are the passwords, in unencrypted form, so caution must be exercised over the access rights to
the DB database itself..

The module will read the password from the user using the conversation mechanism. If you are using

this module on top of another authentication module (like pam_pwdb;) then you should tell that module
to read the entered password from the PAM AUTHTOK field, which is set by this module.

The action of the module may be modified from this default by one or more of the following flags in
the /etc/pam.d/<service> file.

debug - Supply more debugging information to syslog(3).
icase - Perform the password comparisons case insensitive.
dump - dump all the entries in the database to the log (eek, don’t do this by default!)

db=XXXX - use the database found on pathname XXXX. Note that Berkeley DB usually adds the
needed filename extension for you, so you should use something like /etc/foodata instead of
/etc/foodata.db.

use_authtok - use the authentication token previously obtained by another module that did the
conversation with the application. If this token can not be obtained then the module will try to
converse again. This option can be used for stacking different modules that need to deal with the
authentication tokens.

6. A reference guide for available modules 66

e unknown_ok - do not return error when checking for a user that is not in the database. This can
be used to stack more than one pam userdb module that will check a username/password pair
in more than a database.

Examples/suggested usage:

This is a normal ftp configuration file (usually placed as /etc/pam.d/ftp on most systems) that will
accept for login users whose username/password pairs are provided in the /tmp/dbtest.db file:

#/PAM-1.0

auth required pam_listfile.so item=user sense=deny file=/etc/ftpusers onerr=succeed
auth sufficient pam_userdb.so icase db=/tmp/dbtest

auth required pam_pwdb.so shadow nullok try_first_pass

auth required pam_shells.so

account required pam_pwdb.so

session required pam_pwdb.so

6.28 Warning logger module

6.28.1 Synopsis

Module Name:

pam_warn

Author:

Andrew G. Morgan <morgan@kernel.org>

Maintainer:

Author.

Management groups provided:

authentication; password
Cryptographically sensitive:
Security rating:
Clean code base:
System dependencies:

Network aware:
logs information about the remote user and host (if pam-items are known)
6.28.2 Overview of module

This module is principally for logging information about a proposed authentication or application to update
a password.

6. A reference guide for available modules 67

6.28.3 Authentication+Password component

Recognized arguments:

Description:

Log the service, terminal, user, remote user and remote host to syslog(3). The items are not probed
for, but instead obtained from the standard pam-items.

Examples/suggested usage:

an example is provided in the configuration file section 4 (above).

6.29 The wheel module
6.29.1 Synopsis

Module Name:

pam_wheel

Author:

Cristian Gafton <gafton@redhat.com>

Maintainer:

Author.

Management groups provided:

authentication; account
Cryptographically sensitive:
Security rating:
Clean code base:
System dependencies:

Network aware:

6.29.2 Overview of module

Only permit root access to members of the wheel (gid=0) group.

6.29.3 Authentication and Account components

Recognized arguments:

debug; use_uid; trust; deny; group=XXXX

7. Files

68

Description:

This module is used to enforce the so-called wheel group. By default, it permits root access to the

system if the applicant user is a member of the wheel group (first, the module checks for the existence

of a

'wheel’ group. Otherwise the module defines the group with group-id 0 to be the wheel group).

The module can be used as either an ’auth’ or an ’account’ module.

The action of the module may be modified from this default by one or more of the following flags in
the /etc/pam. conf file.

debug - Supply more debugging information to syslog(3).

use_uid - This option modifies the behavior of the module by using the current uid of the process
and not the getlogin(3) name of the user. This option is useful for being able to jump from one
account to another, for example with ’su’.

trust - This option instructs the module to return PAM_SUCCESS should it find the user applying
for root privilege is a member of the wheel group. The default action is to return PAM_IGNORE in
this situation. By using the trust option it is possible to arrange for wheel-group members to
become root without typing a password. USE WITH CARE.

deny - This is used to reverse the logic of the module’s behavior. If the user is trying to get uid=0
access and is a member of the wheel group, deny access (for the wheel group, this is perhaps
nonsense!): it is intended for use in conjunction with the group= argument... Conversely, if the
user is not in the group, return PAM_IGNORE (unless trust was also specified, in which case we
return PAM_SUCCESS).

group=XXXX - Instead of checking the gid=0 group, use the user’s XXXX group membership for the
authentication. Here, XXXX is the name of the group and not its numeric identifier.

Examples/suggested usage:

To restrict access to superuser status to the members of the wheel group, use the following entries in

your configuration file:

#
root gains access by default (rootok), only wheel members can

become root (wheel) but Unix authenticate non-root applicants.

#

su auth sufficient pam_rootok.so

su auth required pam_wheel.so

su auth required pam_unix.so
7 Files

/1lib/libpam.so. *

the shared library providing applications with access to Linux-PAM.

/etc/pam. conf

the Linux-PAM configuration file.

/1lib/security/pam_%.so

the primary location for Linux-PAM dynamically loadable object files; the modules.

8. See also 69

8 See also

e The Linux-PAM Application Writers’ Guide.
e The Linux-PAM Module Writers’ Guide.

e The V. Samar and R. Schemers (SunSoft), “UNIFIED LOGIN WITH PLUGGABLE AUTHENTICA-
TION MODULES”, Open Software Foundation Request For Comments 86.0, October 1995. See this
url: http://www.kernel.org/pub/linuz/libs/pam/pre/doc/rfc86.0.tzt. gz

9 Notes

I intend to put development comments here... like “at the moment this isn’t actually supported”. At release
time what ever is in this section will be placed in the Bugs section below! :)

Are we going to be able to support the use_mapped_pass module argument? Anyone know a cheap (free)
good lawyer?!

e This issue may go away, as Sun have investigated adding a new management group for mappings.
In this way, libpam would have mapping modules that could securely store passwords using strong
cryptography and in such a way that they need not be distributed with Linux-PAM.

10 Author/acknowledgments

This document was written by Andrew G. Morgan (morgan@kernel.org) with many contributions from Chris
Adams, Peter Allgeyer, Tim Baverstock, Tim Berger, Craig S. Bell, Derrick J. Brashear, Ben Buxton, Seth
Chaiklin, Oliver Crow, Chris Dent, Marc Ewing, Cristian Gafton, Emmanuel Galanos, Brad M. Garcia, Eric
Hester, Michel D’Hooge, Roger Hu, Eric Jacksch, Michael K. Johnson, David Kinchlea, Olaf Kirch, Marcin
Korzonek, Stephen Langasek, Nicolai Langfeldt, Elliot Lee, Luke Kenneth Casson Leighton, Al Longyear,
Ingo Luetkebohle, Marek Michalkiewicz, Robert Milkowski, Aleph One, Martin Pool, Sean Reifschneider,
Jan Rekorajski, Erik Troan, Theodore Ts’o, Jeff Uphoff, Myles Uyema, Savochkin Andrey Vladimirovich,
Ronald Wahl, David Wood, John Wilmes, Joseph S. D. Yao and Alex O. Yuriev.

Thanks are also due to Sun Microsystems, especially to Vipin Samar and Charlie Lai for their advice.
At an early stage in the development of Linux-PAM, Sun graciously made the documentation for their
implementation of PAM available. This act greatly accelerated the development of Linux-PAM.

11 Bugs/omissions

More PAM modules are being developed all the time. It is unlikely that this document will ever be truely
up to date!

This manual is unfinished. Only a partial list of people is credited for all the good work they have done.

12. Copyright information for this document 70

12 Copyright information for this document

Copyright (¢) Andrew G. Morgan 1996-2002. All rights reserved.
Email: <morgan@kernel.org>

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

e 1. Redistributions of source code must retain the above copyright notice, and the entire permission
notice in its entirety, including the disclaimer of warranties.

e 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

e 3. The name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

Alternatively, this product may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GNU GPL are required instead of the above restrictions. (This clause
is necessary due to a potential bad interaction between the GNU GPL and the restrictions contained in a
BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

$Id: pam_source.sgml,v 1.11 2002/07/11 05:43:50 agmorgan Exp $

