
Debugging Core Files Using HP WDB

HP Part Number: 5992-0560
Published: April 2007
Edition: 1.0

© Copyright 2007 Hewlett-Packard Development Company, L.P

Legal Notices

Confidential computer software. Valid license fromHP required for possession, use or copying. Consistentwith FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to changewithout notice. The onlywarranties forHP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP
shall not be liable for technical or editorial errors or omissions contained herein.

UNIX is a registered trademark of The Open Group.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Table of Contents
About This Document..9
Intended Audience...9
Typographic Conventions..9
Related Information..9
Introduction..11
What Is a Core File?..11
Causes for a Core Dump...11
Common Signals That Cause Core Dumps..11
Using WDB to Debug Core Files..13

Support for Invoking GDB Before a Program Aborts...14
System Requirements for Core File Debugging..14

Commands For Core File Debugging...15
Invoking WDB to Debug Core Files..15
Setting the Path for the Relevant Shared Libraries..15
Common Commands for Core File Debugging..16

What is a Symbol Table?...20
What is a Stripped Binary?...20

Debugging Core Files Created by Stripped Binaries (When the Symbol Table is Available).........21
Debugging Core Files Created by Optimized or Stripped Binaries...21

Limitations for Debugging Core Files Created by Optimized Binaries..21
Limitations for Debugging Core Files Created by Binaries Compiled Without the -g Option......21
Limitations for Debugging Core Files Created by Stripped Binaries...22

Forcing a Core Dump..26
Saving the Core File to a Specific File Name...26
Debugging a Core File Created by a Forced Core Dump...26

Debugging Core Files From a Different System...28
Debugging PA-RISC Core Files on Integrity Systems..28
Avoiding Core File Corruption...29

Avoiding Core File Corruption for Applications Running HP-UX 11i v1 and HP-UX 11i v2........29
Avoiding Core File Corruption for Applications Running HP-UX 11i v3......................................30

Summary...30
Examples Illustrating Core File Debugging...31

Table of Contents 3

4

List of Tables
1 System Requirements for Core File Debugging..14
2 Commonly Used Commands for Core File Debugging..16
3 Commands for Debugging a Core File From a Different System...28

5

6

List of Examples
1 SIGBUS Causes a Core Dump...12
2 SIGSEGV Causes a Core Dump..12
3 SIGABRT Causes a Core Dump..13
4 Viewing Symbol Information by Using the nm Command..20
5 Debugging Core Files Created by Optimized Code, Stripped Binaries, and Code Compiled

Without the -g Option...23
6 Debugging a Core File to Find the Values for Parameters of a Function When the Program is

not Compiled with -g..31
7 Debugging a Core File to View Information on a Global Variable in a C program......................36
8 Debugging a Core File Created by a Stripped Binary When the Symbol Table is Available........38
9 Debugging of a Core File Created by a Stripped Binary When the Symbol Table is Available

from Another Program..39

7

8

About This Document
This document describes how to debug core files and analyze the process state of an application,
using HP WDB.

Intended Audience
This document is intended for C, Fortran, and C++ programmers who use HP WDB to debug
core files generated byHP C, HP aC++, and Fortran90 compilers. Readers of this documentmust
be familiar with the basic commands that HP WDB supports.

Typographic Conventions
This document uses the following typographical conventions:
%, $, or # A percent sign represents the C shell system prompt. A dollar

sign represents the system prompt for the Bourne, Korn, and
POSIX shells. A number sign represents the superuser prompt.

audit(5) A manpage. The manpage name is audit, and it is located in
Section 5.

Command A command name or qualified command phrase.
Computer output Text displayed by the computer.
ENVIRONMENT VARIABLE The name of an environment variable, for example, PATH.
Key The name of a keyboard key. Return and Enter both refer to the

same key.
Term The defined use of an important word or phrase.
Variable The name of a placeholder in a command, function, or other

syntax display that you replace with an actual value.
[] The contents are optional in syntax. If the contents are a list

separated by |, you must choose one of the items.
{} The contents are required in syntax. If the contents are a list

separated by |, you must choose one of the items.
... The preceding element can be repeated an arbitrary number of

times.
| Separates items in a list of choices.
NOTE A note contains additional information to emphasize or

supplement important points of the main text.

Related Information
The following table lists the documentation available for HP WDB.

LocationDocument

/opt/langtools/wdb/doc/gdb.pdfDebugging with GDB

/opt/langtools/wdb/doc/refcard.pdfGDB Quick Reference Card

/opt/langtools/wdb/doc/html/wdb/C/GDBtutorial.htmlGetting Started With HP WDB

/opt/langtools/wdb/doc/index.htmlWDB GUI Online Help

/opt/langtools/wdb/doc/html/wdbgui/C/HPWDB GUI Documentation

gdb(1)GDB manpage

For the most current HP WDB documentation, see the HP WDB Technical Resourceswebsite at:

About This Document 9

http://www.hp.com/go/wdb

10

http://www.hp.com/go/wdb

Introduction
HPWildebeestDebugger (WDB) is anHP-supported implementation of the open source debugger
GDB. Apart from performing the normal debugging functions, it also enables you to debug core
files and analyze the process state of an application.
HPWDB debugs core files that are created by source-level programs written in HP C, HP aC++,
and Fortran 90 on Itanium®-based systems runningHP-UX 11i v2 orHP-UX 11i v3, andHP 9000
systems running HP-UX 11i v1, HP-UX 11i v2, or HP-UX 11i v3 operating systems.

What Is a Core File?
Acore dump is an abnormal termination of a program. Themost common types of programming
errors that can cause a core dump include program aborts, memory violations, bus errors, and
illegal instructions. When a core dump occurs during the execution of a program, the core file,
core, is created in the working directory of the terminated process. This core file reflects the
memory image of the terminated process. You can use the information in a core file to debug an
abnormally-terminated program and analyze the causes for the core dump.

Causes for a Core Dump
When a kernel encounters an un-handled signal, it creates a core file for that process. Alternately,
the user can force a core dump to create a core file (through WDB or by using gcore).
The file command is the simplest method to analyze the cause of a core dump at the HP-UX
prompt.
The file command displays the signal that triggered the core dump.
For example:
$ file core
core: core file from 'a' - received SIGBUS

This example illustrates that the program dumped a core after receiving the SIGBUS signal.

Common Signals That Cause Core Dumps
Following are some signals that commonly cause core dumps:
• SIGBUS

One reason why aSIGBUS signal is sent to a process is when the program attempts to load
or store a data item at a non-aligned address.
Example 1 illustrates a load or store operation of a data item at a non-aligned address.

Introduction 11

Example 1 SIGBUS Causes a Core Dump

$ cat a.c
#include <stdio.h>

int main()
{
 char a[64], *b;
 int *i;

 b = a;
 b++;
 i = (int *)b;
 printf("%i", *i);
return 0;
}
$ aCC a.c -o a
$./a
Memory fault(core dump)
$file core
core: core file from 'a' - received SIGBUS

In this example, the program attempts to load a data item at a non-aligned address, which
results in a SIGBUS signal.
The variable a is a local variable on the stack. The pointer b is set to point to the start of a.
The pointer b is set to increment such that it does not point to a word aligned address. The
value in pointer b is assigned to pointer i.When pointer i is de-referenced, a SIGBUS signal
is encountered.

• SIGSEGV

ASIGSEGV signal is sent to a programwhen a segmentation violation occurs. A segmentation
violation occurs when a process attempts to access an address that is not in the currently
allocated address space of the process.
Example 2 illustrates how a SIGSEGV signal can cause a core dump.

Example 2 SIGSEGV Causes a Core Dump

$ cat a.c
int main()
{
 int *i, j;
 i = (int *)0x48000000;

 j = *i;
return 0;
}
$ aCC a.c -o a
$./a
Memory fault(core dump)
$ file core
core: core file from 'a' - received SIGSEGV

In this example, the program de-references a nonexistent pointer address, and this results
in a SIGSEGV signal.

12

• SIGABRT

A SIGABRT signal can be sent to a process in any of the following ways:
— The process can send the abort signal, SIGABRT, by invoking the abort(3) function.
— Another process or the user can invoke the kill command to send the SIGABRT

signal.
— As a result of calls to C++ terminate() function on various runtime library errors.

Example 3 (page 13) illustrates a SIGABRT signal caused by a call to terminate().

Example 3 SIGABRT Causes a Core Dump

$ cat gdb_throw_example.c
#include <stdio.h>
void foo(int i) {
 throw i;
}
int main() {
 foo(10); // will not be caught
}
$ a.out
aCC runtime: Uncaught exception of type "int".
Abort(coredump)

Core was generated by `a.out'.
Program terminated with signal 6, Aborted.

(gdb) bt
#0 0x60000000c0349f50:0 in kill+0x30 () from /usr/lib/hpux32/libc.so.1
#1 0x60000000c0240e90:0 in raise+0x30 () from /usr/lib/hpux32/libc.so.1
#2 0x60000000c0304390:0 in abort+0x190 () from /usr/lib/hpux32/libc.so.1
#3 0x60000000c4744cb0:0 in std::terminate () at ../terminate.C:70
#4 0x60000000c476c550:0 in __cxa_throw () at ../NewExceptionHandling.C:610
#5 0x4000ad0:0 in foo () at gdb_throw_example.c:3
#6 0x4000ba0:0 in main () at gdb_throw_example.c:6

This example illustrates the core dump which is caused by a call to the C++ terminate()
function.

For more information about other common signals that can cause core dumps, see signal(5).

NOTE: The SIGKILL signal does not generate a core file.

Using WDB to Debug Core Files
The core file debugging features in WDB enable you to analyze the cause of a core dump and
analyze the process state of an application.
Core file debugging features in WDB are typically used under the following scenarios:
• The program dumps core as a result of programming errors.
• The program is forced to dump core by using the dumpcore command in WDB, or the

gcore utility, that is available on HP-UX.
WDB can be used to debug the following kinds of core files:
• A core file is created by a program that is compiled without the –g option.
• A core file is created by a stripped executable.
• A core file is created by a program, and the source code for the program is available.
If you can reproduce the problem when running the program under WDB, it is easier to use a
live debugging session inWDB to debug the program, instead of debugging the core file.However,
the same debug information in the program can be used for core file debugging.

Using WDB to Debug Core Files 13

Support for Invoking GDB Before a Program Aborts
WDB also provides the -crashdebug option to monitor the program execution and invoke the
debugger when the program execution is about to abort. This option provides support for
debugging a live process before the program aborts, instead of debugging the core file after the
program aborts.
Once the debugger is invoked, you can debug the application by using the common debugger
commands. You can examine the state of the process, make changes to the state, and continue
program execution, force a core dump, or terminate execution.
It also enables you to control program execution under the debugger if the program is about to
abort. You can load a new process or attach to a running process for monitoring.
To monitor a new process, enter the following command at the HP-UX prompt:
$ gdb -crashdebug [command][options]

Tomonitor and attach to a running process, enter the following command at the HP-UX prompt:
$ gdb -crashdebug -pid [pid]

System Requirements for Core File Debugging
Table 1 lists the system requirements for debugging core files using WDB.

Table 1 System Requirements for Core File Debugging

DescriptionRequirement

HP–UX 11i v1, HP-UX 11i v2, or HP-UX 11i v3 on HP
9000 systems
HP-UX 11i v2 or HP-UX 11i v3 on Integrity systems

Operating System

14

Commands For Core File Debugging
This section discusses the commands for debugging core files.

Invoking WDB to Debug Core Files
To invoke the debugger on the core file, enter one of the following commands:
• At the HP-UX prompt:

$ gdb a.out core

or
$ gdb a.out -c core

or
$ gdb -c core

• (Or) At the gdb prompt:
(gdb) core core

(where a.out is the executable that dumped core.)
If the executable path is not provided, the debugger selects the invocation path of the process
that generated the core file. The invocation path information is stored in the core file. If the
invocation path is a relative path, you must specify the executable to debug the core file.
On invoking the core file debugging session, the debugger displays the following information
(depending on the debug information available):
• The signal that caused the core file
• The cause of the un-handled signal
• The instruction at which this signal occurred
• The function name and the parameters of the function in which this instruction resides
• The source line information
The following example illustrates the output from the debugger on invoking a core file debugging
session:
..
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
SEGV_ACCERR - Invalid Permissions for object
#0 inline generate_core_dump () at a.c:11
11 printf ("Generated coredump\n");
(gdb) bt
#0 inline generate_core_dump () at a.c:11
#1 0x4000a00:0 in inline foo () at a.c:30
#2 0x40009b0:1 in main () at a.c:37

Setting the Path for the Relevant Shared Libraries
The core files do not carry information about the exact version of shared libraries that were in
use at the time of core dump. Analyzing a core file without the correct versions of shared libraries
can producemisleading results. Hence, youmust provide information about the relevant shared
libraries before initiating a core file debugging session. All the required libraries must be copied
to a temporary location on the system where you are debugging the core file (if it is different
from the system where the core file was generated).
The executable and the core file inherently carry information about the list of shared libraries
that were loaded at the instant of core dump. However, this list of shared libraries is referenced
by pathnames (the invoked path of the shared libraries on the system where the core dump
occurred).

Commands For Core File Debugging 15

If the shared libraries are located at a path that is different from the invoked path, you must
provide WDB with the path for the shared libraries.
To associate the appropriate versions of the shared librarieswith the core file, set the environment
variable, GDB_SHLIB_PATH, as follows:
$ export GDB_SHLIB_PATH<path>

NOTE: You can use packcore, and unpackcore to pack, or unpack the core file along with
the relevant executable and libraries in a single tar file, and debug the core file on a different
system from the one on which the core file was invoked.
For more information on debugging a core file from a different system than the one on which
the core file was created, see “Debugging Core Files From a Different System” (page 28)

Common Commands for Core File Debugging
Table 2 lists the common commands for core file debugging.

Table 2 Commonly Used Commands for Core File Debugging

DescriptionCommand
Debugging
Feature

Invokes the core file debugging feature in WDB.
If the executable path is not provided, the debugger selects
the invocation path of the process that generated the core file.
The invocation path information is stored in the core file. If
the invocation path is a relative path, you must enter the
executable while debugging the core file.

At the HP-UX prompt:
$ gdb a.out core

or
$ gdb a.out -c core

or
$ gdb -c core

Invoking the
core file

Displays the backtrace information about the process that
encountered the un-handled signal and the call chain
(including inlined functions). The backtrace is displayed for
the thread where the un-handled signal occurred.
All the stack frames are displayed if no arguments are
specified. If <COUNT> is specified, it display the innermost
COUNT frames. If a negative argument,<-COUNT>, is specified,
it displays the outermost COUNT frames.

backtrace [<-><count>]
where [<-><count>]

Viewing
backtrace
information

The up and the down commands enable you to traverse (up
or down) the call chain in the stack. You can traverse up to a
specific number of frames in the stack if<number> is specified.
The frame <frame-number> command enables you to
traverse the stack frame to the specified frame number,
<frame-number>. This thread ismarkedwith '>' in theinfo
thread output, while the current selected thread is marked
with a '*' symbol.

up <number>

down <number>

frame <frame-number>

Traversing the
stack

16

Table 2 Commonly Used Commands for Core File Debugging (continued)

DescriptionCommand
Debugging
Feature

The info thread command enables you to view the list of
all the threads in the process at the time of core dump.
The thread <thread-id> command enables you to switch
the thread view under the debugger from one thread to
another. The thread that created the un-handled signal is the
current thread when the core file is loaded in to the debugger.
The thread apply command allows you to apply a
command to one ormore threads. You can specify the numbers
of the threads, where the commandmust be applied, with the
command argument<thread-id>. the command
argument<thread-id> is the internal GDB thread number,
as shown in the first field of theinfo threads display. To
apply a command to all threads, use thread apply all
args.
The backtrace-other-thread command prints the
backtrace of all stack frames for a thread with stack pointer
SP, and program counter PC. This command is useful in cases
where the debugger does not support a user thread package
fully.

info thread

thread <thread-id>

thread apply
<thread-id>[all]args

backtrace-other-thread

Viewing thread
information

Displays information about the global and local variables in
the program.
The <expr> is an expression (in the source language). By
default the value of <expr> is printed in a format appropriate
to its data type. To change the display format, you can use the
where </f> option, where f is a letter specifying the display
format, [x|d|u|o|t|a|c|f].

print </f><expr>Printing global
and local
variables

Prints the description of a data type,<typename>, where
<typename> can be the name of a type, or it can have the
form class class-name, struct <structtag>, union
<union-tag> or enum <enum-tag> in the case of C code.

ptype <typename>Printing the
description of a
data type

Enables you to navigate the source code if it has been compiled
with the -g option.
When no arguments are specified, it lists ten lines after or
around the previous listing.
The list - command lists the ten lines before a previous
ten-line listing.
The list <line-number> command lists the source code
around the specified line in the current file. You can also
specify the starting line number and the ending line number
of the source code to be displayed (separated by a comma).
The list <function> command lists the source code
around the beginning of the specified function.
Thelist <*address> command lists the source code around
the line containing the specified address.

list [- | <line-number>
|<function> | <*address>
]

Navigating the
source code

Disassembles a specified section of the memory. The default
disassembled memory is the function surrounding the pc of
the selected frame.
If an address is specified, the function surrounding the
specified address is disassembled.
If <func-name> is specified, the range of addresses for that
function are disassembled.
If two addresses are specified, the function surrounding the
specified address range is disassembled.

disassemble <address>

disassemble <func-name>

disassemble <address> -
<address>

Disassembling
the core file

Commands For Core File Debugging 17

Table 2 Commonly Used Commands for Core File Debugging (continued)

DescriptionCommand
Debugging
Feature

Displays memory information of a specified address.
The x /x <address> command prints the contents of the
specified memory address in hexadecimal format.
The x /s <address> command prints the contents of the
address of a string.
The x /d <address> command prints the contents of the
address in decimal format.

x /[x|s|d] <address>Examining
memory

Displays the contents of the registers at the time of core dump.info registersViewing
register
information

Displays information about all the shared libraries that are
loaded at the time of core dump.

info sharedViewing shared
library
information

The info files and info target commands print the
current target, including the names of the executable and core
dump files currently in use by GDB, and the files from which
the symbols were loaded.
The command help target lists all possible targets rather
than current ones.

info files

info target

help target

Prints the target
that is currently
under the
debugger

Read symbol table information from file <filename>. The
symbol-file command with no argument clears out GDB
information on the symbol table of the program, and causes
GDB to erase the contents of the convenience variables, the
value history, and all breakpoints and auto-display expressions

symbol-file <filename>Read symbol
information
from a file

Reads additional symbol table information from the file
<filename> (when<filename> is dynamically loaded into
the program that is running.
The <address> is the memory address at which the file is
loaded. (GDB cannot detect this address, unless specified)
You can specify up to three addresses (the addresses of the
text, data, and bss segments respectively).

add-symbol-file <filename>
<address>[-s <section>
<sect-address> -s
<section> <sect-address>]

Read additional
symbol
information

Forces a core dump and creates a core image file for a process
that is running under the debugger.
If the filename is specified, it saves the dumped core file in the
file, <corefile-name> , instead of the default file,
core.<pid> (where pid is the process ID number).

dumpcore <corefile-name>Forcing a core
dump

Packs the core file along with the relevant executable and
libraries in a single tar file for core file debugging on another
system.

packcorePacking the
core file along
with the
associated
shared libraries

Unpacks the tar file that is generated by the packcore
command so that the debugger can use the executable and
shared libraries from this bundle, when debugging the core
file on a different system from the one on which the core file
was originally created.

unpackcoreUnpacking the
core file along
with the
associated
shared libraries

Enables you to examine a packcore directory, which was
previously created by unpackcore. It takes one optional
argument, which is the name of the packcore directory.

getcore
<packcore-directory>

Examine a core
file which was
previously
created by
unpackcore

18

Example 6 (page 31) and Example 7 (page 36) illustrate the use of the common core file debugging
commands.

Commands For Core File Debugging 19

What is a Symbol Table?
Asymbol table is a set of records that define the set of visible and important symbols in a program.
These symbols are stored in the program. Each (unstripped) program has an associated symbol
table.
The nm command displays the symbol information for a specified object file.
Example 4 illustrates how to view symbol information for an object file by using the nm command
for an object file, on an HP 9000 system.

Example 4 Viewing Symbol Information by Using the nm Command

This example illustrates the use of the nm command to display the symbol information for the
common linker and debugger symbols, Cerrno and Cselectdraw, on an HP 9000 system:
$ nm -x Cscreen_selection.o |grep Cerrno
Cerrno | |undef |data |
$ nm -x Cscreen_selection.o |grep Cselectdraw
Cselectdraw |0x00001178|extern|entry |$CODE$

The output of the nm command illustrates that the symbol, Cerrno is an undefined data symbol
and that the symbol, Cselectdraw is a function that is a code entry point.
Alternately, you can use odump -slexport, orelfdump -n dynsym -s, instead of nm to
view the symbol definition for stripped binaries.
For example:
$ odump -slexport file # for PA-RISC 32-bit application
Index NextIndex Module Value Type Size/Ver,Arg TA Name
000000004 -00000001 -0001 0x4000e42c Stor 0x00000004 00 __dld_loc
000000005 -00000001 -0001 0x40001008 Data 000000,155 00 _SYSTEM_ID
000000017 -00000001 -0001 0x000319a8 Code 000000,155 00 malloc

$ elfdump -n .dynsym -s file # for Itanium or PA-RISC 64-BIT application
Index Type Bind Other Sect Value Size Name
10 FUNC GLOB 0 0x11 0x8000000100002a50 24 what__9exceptionCFv
11 OBJT GLOB 0 0x1c 0x8000000100003cf0 8 __eh_notify_cxperf

The dynamic symbols are not removed with the strip command. The strip -l command
only strips the line number tables.

What is a Stripped Binary?
Thestrip command removes the symbol table, debug information, and line number information
from the object file, including the archives. Thereafter, no symbolic debugging access is available
for the stripped object file.
Thestrip -l strips only the line table information, and the symbolic debugging access continues
to be available.
For more information on the strip command, see strip(1)
Stripped executables or shared libraries can also be built by using the -s compiler or linker
option.
In HP 9000 systems, the file command displays whether an executable is stripped or not.
The following example illustrates the use of the file command before and after a strip
operation:
$ file a
a: PA-RISC1.1 shared executable dynamically linked -not stripped
$ strip a
$ file a
a: PA-RISC1.1 shared executable dynamically linked

20

In Integrity systems, you must use the nm to display whether the binary is stripped or not. The
output from the nm command displays 'no symbols' for a stripped binary on Integrity systems.

Debugging Core Files Created by Stripped Binaries (When the Symbol Table is
Available)

You can debug a core file that is created by a stripped binary effectively, if the symbol table for
the unstripped version of the program (before the program is stripped) is available.
Alternately, you can also debug the core file that is created by a stripped program if the symbol
table is available from another program, which functionally uses the same symbols, but has a
different link order.
Example 8 (page 38) illustrates the core file debugging for a stripped binary when the symbol
table of the unstripped program is available.
Example 9 (page 39) illustrates the core file debugging for a stripped binary when the symbol
table is available from another program, which uses the same symbols, but in a different link
order.

Debugging Core Files Created by Optimized or Stripped Binaries
All core file debugging features are available for unstripped binaries and shared libraries that
are built using the -g option.
However, the following limitations apply for core files that are created by binaries that are
compiled without the -g option, and for core files created by optimized (optimization level 2 or
above) and stripped binaries.

Limitations for Debugging Core Files Created by Optimized Binaries
The following limitations apply for core files that are created by optimized binaries (optimization
level 2 or above) that are compiled with the -g option:
• Local variables and arguments in an optimized module are not displayed.
• The backtrace information displays the inlined functions. However, the line numbers are

not displayed accurately at +O2 and higher levels of optimization.
For an illustration of these limitations, see “Sample Debugging Session 1” in Example 5 (page 23)

Limitations for Debugging Core Files Created by Binaries Compiled Without the -g
Option

The following limitations apply for core files that are created by binaries compiled without the
-g option:
• Argument information in the stack traces is not displayed.
• Local variables and type information are not displayed.
• Inline frame information is not displayed. The source line information is not displayed for

core files that are created by PA-RISC binaries.
In the case of Integrity systems (Itanium-based binaries), the source line information is
displayed for core files.

NOTE: In the case of core files that are created by Itanium-based binaries, the source line
information is available, irrespective of whether the binary is compiled with the -g option,
or not. To strip the line number information for Itanium-based binaries, you must use the
strip -l command orr the +nosrcpos linker option.

For an illustration of these limitations, see “Sample Debugging Session 2” in Example 5 (page 23).

Debugging Core Files Created by Optimized or Stripped Binaries 21

Limitations for Debugging Core Files Created by Stripped Binaries
The following limitations apply for core files that are created by a stripped executable:
• Local variables and static variables in a stripped module are not displayed.
• Global variables and type information in a stripped module are not displayed. However,

the debugger can access the global or local variables (within the scope of the variables) that
are defined in other unstripped shared libraries, which are loaded in to the stripped
executable.

• Argument information in the stack traces is not displayed.
• The static function names appearing in the stack traces are not displayed. The debugger

mayprint randomnames insteadof<unknown_procedure>while displaying these function
names.

• In the case of core files created by PA-RISC binaries, the function names (static and non-static)
appearing in the stack are not displayed.

NOTE:
• To avoid these limitations in debugging core files created by stripped binaries, you can use

the original unstripped version of the executable, if it is available. For more information
about debugging stripped binaries by using the symbol table from the unstripped version
of the executable, see “DebuggingCore Files Created by Stripped Binaries (When the Symbol
Table is Available)” (page 21).

For an illustration of these limitations for core files created on an Integrity system, see “Sample
Debugging Session 3” in Example 5 (page 23).

22

Example 5 Debugging Core Files Created by Optimized Code, Stripped Binaries, and Code
Compiled Without the -g Option

Sample Program
 1 // a.c
 2 // Generates coredump with 3 deep stack trace.
 3
 4 #include <stdio.h>
 5
 6 void
 7 generate_core_dump ()
 8 {
 9 int i = 0;
 10 *(int*)i = 10;
 11 printf ("Generated coredump\n");
 12 *(int*)i = 10;
 13 }
 14
 15 void
 16 foo (int arg_i)
 17 {
 18 int local_j;
 19 if (arg_i == 10)
 20 {
 21 local_j = 5;
 22 printf ("Hello World! Arg_i is 10 and
 local_j is %d\n",local_j);
 23 }
 24 else
 25 {
 26 local_j = 10;
 27 printf ("Hello World! Arg_i is not 10 and
 local_j is %d\n", local_j);
 28 }
 29 if (local_j == 5)
 30 generate_core_dump();
 31 printf ("Hello World\n");
 32 }
 33
 34 int main()
 35 {
 36 int local_i = 10;
 37 foo(local_i);
 38 return 0;
 39 }

Sample Debugging Session 1
Debugging a Core File Created by Optimized Code
$ aCC -g -O a.c
$ /opt/langtools/bin/gdb ./a.out core
HP gdb for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the conditions to
change it and/or distribute copies. Type "show warranty" for
warranty/support.
..
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
SEGV_ACCERR - Invalid Permissions for object
#0 inline generate_core_dump () at a.c:11
11 printf ("Generated coredump\n");
(gdb) bt
#0 inline generate_core_dump () at a.c:11

Debugging Core Files Created by Optimized or Stripped Binaries 23

#1 0x4000a00:0 in inline foo () at a.c:30
#2 0x40009b0:1 in main () at a.c:37
(gdb) up
#1 0x4000a00:0 in inline foo () at a.c:30
30 generate_core_dump();
(gdb) p local_j
No symbol "local_j" in current context.

The debugger cannot display information about the arguments and local variables because the
program is compiled with the -O option (level 2 optimization). However, the debugger can
display the inlined functions in the backtrace and provide the line number information. The line
numbers may not be displayed accurately because the code is moved during optimization.
If you encounter issues while debugging inlined functions, you can use the +d compiler option
to disable inlining, as follows:
$ aCC -g -O +d a.c

Examples on Integrity systems built without -g display significantly greater inlining and source
line information than the same examples that are built on HP 9000 systems.
Sample Debugging Session 2
Debugging a Core File Created by Code Compiled Without the -g Option
$ aCC a.c

$ /opt/langtools/bin/gdb ./a.out core
HP gdb for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the conditions to
change it and/or distribute copies. Type "show warranty" for
warranty/support.
..
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
SEGV_ACCERR - Invalid Permissions for object
#0 0x40009b0:1 in generate_core_dump () at a.c:10
10 *(int*)i = 10;
(gdb) bt
#0 0x40009b0:1 in generate_core_dump () at a.c:10
#1 0x4000b40:0 in foo () at a.c:30
#2 0x4000bd0:0 in main () at a.c:37
(gdb) p local_j
No symbol "local_j" in current context.
(gdb)

In the case of core files created by PA-RISC - based binaries, the source line information is not
available if the binary has not been compiled with the -g option. The information about the
arguments and the local variables is not displayed.
In the case of core files created by Itanium-based binaries, the source line information is available,
irrespective of whether the binary is compiled with the -g option, or not.
Sample Debugging Session 3
Debugging a Core File Created by a Stripped Binary When the Symbol Table is Not Available

24

$ aCC -g a.c
$ strip a.out

$ /opt/langtools/bin/gdb ./a.out core
HP gdb for HP Itanium (32 or 64 bit) and target HP-UX 11.2x.
Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest (based on GDB) is covered by the
GNU General Public License. Type "show copying" to see the conditions to
change it and/or distribute copies. Type "show warranty" for
warranty/support.
..
warning: Load module ./a.out has been stripped.
Debugging information is not available.

(no debugging symbols found)...
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
SEGV_ACCERR - Invalid Permissions for object
(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0x40009b0:1 in generate_core_dump+0x21
()
(gdb) bt
#0 0x40009b0:1 in generate_core_dump+0x21 ()
#1 0x4000b40:0 in foo+0x110 ()
#2 0x4000bd0:0 in main+0x20 ()
(gdb)

Debugging Core Files Created by Optimized or Stripped Binaries 25

Forcing a Core Dump
WDB enables you to force a core dump of a running process, and analyze the core file.
The dumpcore command forces a core dump and generates a core image file for a process that
is running under the debugger. If no arguments are given, it saves the core image for the current
debugged process in a file named core.<pid>, where <pid> is the process ID number.
Before debugging a forced core dump, you must enter the set live-core 1 command at the
gdb prompt. The set live-core command enables the debugging of a core file created by a
forced core dump. Alternately, you can use the --lcore start-up option to debug a core file
created by a forced core dump.

Saving the Core File to a Specific File Name
You can specify a <corefile-name> as an option in the dumpcore command. This saves the
dumped core file in the specified file, <corefile-name>, instead of core.<pid>.
To specify the filename as an option in the dumpcore command, enter the following command
at the gdb prompt:
(gdb) dumpcore <corefile-name>

Debugging a Core File Created by a Forced Core Dump
To debug a core file that is created by a forced core dump, complete the following steps:
1. To dump the core for a live process, enter the following command at the gdb prompt:

(gdb) dumpcore

For example:
(gdb) run
Starting program: sample
Breakpoint 3, main () at sample.c:1010 b= foo(a);
(gdb) dumpcore
Dumping core to the core file core.24091
(gdb)

2. To analyze the dumped core file, enter one of the following commands:
• At gdb prompt:

(gdb) core [core.<pid>|<corefile-name>]

For example:
(gdb) file sample
Reading symbols from sample...done
(gdb) set live-core 1
(gdb) core core.24091
Core was generated by ’sample’.
#0 main () at sample.c:1010 b = foo(a);
(gdb) backtrace
#0 main () at sample.c:10
(gdb)

(Or)

• At shell prompt:
% gdb --lcore a.out [core.<pid>|<corefile-name>]

For example:
% ./gdb --lcore sample core.24091
HP gdb for PA-RISC (narrow), HP-UX 11.23. Copyright 1986 -
2001 Free Software Foundation, Inc. Hewlett-Packard Wildebeest
(based on GDB) is covered by the GNU General Public License.
Type "show copying" to see the conditions to change it and/or
distribute copies.

26

Type "showwarranty" for warranty/support....

Core was generated by ’sample’.
#0 main() at sample.c:10
(gdb)

Forcing a Core Dump 27

Debugging Core Files From a Different System
When debugging a core file, the debugger requires the exact versions of shared libraries and the
executable that are associated with the core file.
Table 3 lists the commands for debugging a core file from a different system.

Table 3 Commands for Debugging a Core File From a Different System

DescriptionCommand

Packs the core file alongwith the relevant executable and
libraries in a single .tar file.

packcore

Unpacks the .tar file generated by the packcore
command. The debugger can use the executable and
shared libraries from this bundle while debugging the
core file on a system, which is different from the one on
which the core file was originally created.

unpackcore

Enables you to examine a packcore directory, which
was previously created by unpackcore. It takes one
optional argument, which is the name of thepackcore
directory.

getcore

To debug core files from a different system than the one on which the core file was created,
complete the following steps:
1. Invoke WDB on the core file on the system where the core file was created.
2. Enter the packcore command to package the .tar file with the core file, the relevant

libraries, and the relevant binaries.
3. Transfer the .tar file to the required system.
4. Enter the unpackcore command to unpack the .tar file on this system.
5. Start debugging the core file on this system.
6. If you exit from the debugging session, and must debug the same core file again, you can

use the getcore command to examine the packcore directory, which was previously
created by unpackcore. The getcore command accepts the name of the packcore
directory as an argument.

Debugging PA-RISC Core Files on Integrity Systems
Using WDB, you can transparently debug PA-RISC programs running in compatibility mode
under Aries on Integrity systems.
To debug a core file generated by a PA-RISC program on an Integrity system, complete the
following steps:
1. Transfer the executable program, core file, and all shared libraries that are used by the

PA-RISC application, to the target Integrity system.
2. Set the GDB_SHLIB_PATH environment variable to a colon-separated list of directory path

names on the system where the transferred shared libraries reside.
3. Use WDB to examine the core file on the Integrity system.

28

Avoiding Core File Corruption
You can prevent overwriting of core files from a different process by setting the kernel to store
the core file in a process-specific file name, <core.pid> (where pid is the process ID of the
process that dumped the core).

Avoiding Core File Corruption for Applications Running HP-UX 11i v1 and HP-UX
11i v2

To prevent overwriting of core files from different processes for applications running HP–UX
11i v1 or 11i v2 operating systems, you must set the kernel parameter core_addpid to 1. The core
file is stored in a file name, <core.pid> in the current directory. To store core files in a specific
filesystem, you must switch to the required directory (using the cd command) and then run the
required application.
To set the kernel parameter to prevent core file corruption, complete the following steps:
1. Create the following script, corepid, as a superuser of the system before running the

application:
cat <path>/corepid
case $1 in
 on) echo "core_addpid/W 1\ncore_addpid?W 1" | adb -w -k
/stand/vmunix /dev/mem;;
 off) echo "core_addpid/W 0\ncore_addpid?W 0" | adb -w -k
/stand/vmunix /dev/mem;;
 stat) echo "core_addpid/D\ncore_addpid?D" | adb -w -k
/stand/vmunix /dev/mem;;
 *) echo "usage $0: on|off|stat";;
esac

2. To enable or disable the feature to store the core file in a specific file, core.pid , run the
script, corepid, with the following parameter:
#<path>/corepid[on|off]

3. To view the current settings for this feature, run the corepid, with the following parameter:
#<path>/corepid [stat]

The following example illustrates how to use this script:
#cat /tmp/corepid
case $1 in
 on) echo "core_addpid/W 1\ncore_addpid?W 1" | adb -w -k
/stand/vmunix /dev/mem;;
 off) echo "core_addpid/W 0\ncore_addpid?W 0" | adb -w -k
/stand/vmunix /dev/mem;;
 stat) echo "core_addpid/D\ncore_addpid?D" | adb -w -k
/stand/vmunix /dev/mem;;
 *) echo "usage $0: on|off|stat";;
esac
#/tmp/corepid stat
core_addpid:
core_addpid: 0
core_addpid:
core_addpid: 0
#/tmp/corepid on
core_addpid: 0 = 1
core_addpid: 0 = 1
#/tmp/corepid stat
core_addpid:
core_addpid: 1
core_addpid:
core_addpid: 1
#/tmp/corepid off

Avoiding Core File Corruption 29

core_addpid: 1 = 0
core_addpid: 1 = 0

Avoiding Core File Corruption for Applications Running HP-UX 11i v3
To prevent overwriting of core files from different processes for applications running in HP-UX
11i v3, you can use the coreadm commandl.
The coreadm command enables you to specify the location and pattern for core files that are
created by abnormally terminating processes. This command can also be used to specify the path
for the core file placement. In addition, it can be used to specify the process specific pattern for
the file name of the core file.
For example, to set the global core file settings to include the process-ID and the system name
in the file name of the core, <core.pid> and to place the core file in the specified path, <path>,
you can enter the following command as a super-user at the HP-UX prompt:
 # coreadm -e global -g <path>/core.%p.%n

For more information about using the coreadm command to avoid core file corruption, see
coreadm(1M)

NOTE: This feature(to prevent core file corruption) is not required for forced core-dumps. In
the case of forced core-dumps, the core files are stored in a file name, <core.pid>, by default.

Summary
WDB enables you to debug a core file and analyze the cause for the core dump. It also enables
you to force a core dump of an application and analyze the process state of the application. In
addition, you can debug a core file on a system that is different from the system on which the
core file was created.

30

Examples Illustrating Core File Debugging
The examples in this section are for core files that are created on an HP 9000 system (PA-RISC).
If the program is not compiled with -g, the line number information is not available in the case
of core files on PA-RISC systems.
On the contrary, the source line number information is available for core files created by
Itanium-based binaries, irrespective of whether the core file is compiled with the -g option, or
not.
The following examples illustrate how to use the common core file debugging commands in
WDB:
(The examples are based on core files created by PA-RISC 32–bit binaries)

Example 6 Debugging a Core File to Find the Values for Parameters of a Function When the
Program is not Compiled with -g

Sample Program
The sample program used in this example has multiple functions. The function_abort()
function in this program causes the application to abort. This example illustrates how to debug
this core file and find values for the parameters of function_abort().
Following is the code for the structures in function_abort():
extern int function_abort(struct st_one *, int);

struct st_two {
 char *a;
 int b;
 float c;
 char *d;
};
struct st_one {
 int one;
 char *two;
 struct st_two *three;
 int *four;
 char *five;
};
.
.
.

Sample Debugging Session
1. Invoke WDB on the core file, as follows:

$gdb example core
HP gdb Copyright 1986 - 2001 Free Software Foundation, Inc.
Hewlett-Packard Wildebeest)Wildebeest is free software, covered
by the GNU General Public License, and you are welcome to change it
and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions. There is
absolutely no warranty for Wildebeest.
Type "show warranty" for details.

..(no debugging symbols found)...
Core was generated by `example'.
Program terminated with signal 6, Aborted.
warning: The shared libraries were not privately mapped; setting a
breakpoint in a shared library will not work until you rerun the program.

Examples Illustrating Core File Debugging 31

(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0xc01082b8 in kill () from /usr/lib/libc.2

2. View the backtrace information to analyze the flow of routines in the program that resulted
in a program abort. The following backtrace information of the core file illustrates that
function_abort() invoked the abort library call in libc to kill the process:
(gdb) bt
#0 0xc01082b8 in kill () from /usr/lib/libc.2
#1 0xc00a52e8 in raise () from /usr/lib/libc.2
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
#4 0x2420 in function_abort () from /home/u492893/example/./example
#5 0x23d0 in function_b () from /home/u492893/example/./example
#6 0x23a0 in function_a () from /home/u492893/example/./example
#7 0x2370 in main () from /home/u492893/example/./example

This program is not compiled with the debug option. However, if parts of the program are
compiled using the debug option, you can view information about the source file that contains
this code, the line number of the code where the program crashed, and all the function
parameters. You can also list the source code for the parts of the program that are compiled
using the debug option.

3. Traverse the stack to view the call chain.
Following are some of the basic commands for traversing the stack:
• To traverse (up or down) the call chain, enter the up or down command as in the

following example:
(gdb) up
#1 0xc00a52e8 in raise () from /usr/lib/libc.2

To execute the previous command at gdb prompt, press Enter at the gdb prompt, as in
the following example:
(gdb)
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
(gdb)
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
(gdb)
#4 0x2420 in function_abort () from /home/u492893/example/./example

• You can also directly traverse the stack by entering the number of frames as an option
in the up or down command, as follows:
(gdb) up 4
#4 0x2420 in function_abort () from /home/u492893/example/./example
(gdb) down 4
#0 0xc01082b8 in kill () from /usr/lib/libc.2

• To traverse the stack by using the frame number, enter the frame command, as in the
following example:
(gdb) frame 4
#4 0x2420 in function_abort () from /home/u492893/example/./example

4. Disassemble the required calling function.
To view information about the function prototype and the definition of the structures in the
prototype, you must disassemble the required function. This displays the location of the
stored function parameters if the function has stored the parameters.
The following example illustrates the disassembly of function_abort:
(gdb) disassemble function_abort
Dump of assembler code for function function_abort:
0x23f4 <function_abort>: stw %rp,-0x14(%sr0,%sp)
0x23f8 <function_abort+4>: ldo 0x40(%sp),%sp
0x23fc <function_abort+8>: stw %r26,-0x64(%sr0,%sp)
0x2400 <function_abort+12>: stw %r25,-0x68(%sr0,%sp)
0x2404 <function_abort+16>: ldw -0x64(%sr0,%sp),%r20

32

0x2408 <function_abort+20>: ldw 8(%sr0,%r20),%r21
0x240c <function_abort+24>: ldi 0x63,%r22
0x2410 <function_abort+28>: stw %r22,4(%sr0,%r21)
0x2414 <function_abort+32>: ldil L'0x2000,%r31
0x2418 <function_abort+36>: be,l 0x3dc(%sr4,%r31)
0x241c <function_abort+40>: copy %r31,%rp
0x2420 <function_abort+44>: ldw -0x54(%sr0,%sp),%rp
0x2424 <function_abort+48>: bv %r0(%rp)
0x2428 <function_abort+52>: ldo -0x40(%sp),%sp
End of assembler dump.

If the parameters are not stored on the stack, the task of reading the core file is similar to
reading a kernel crash dump. In such cases, you must analyze the routines that are invoked
before the required function and check if the parameters are passed up the stack by these
routines. You must also check if these routines have saved the address or the value on the
stack.

5. Analyze the assembler dump from the disassembly output.
The first four arguments for a function are passed through registers for PA-RISC 32–bit
binaries. However, the stack is not updated using these values. The invoked function saves
the arguments to the stack, if required. If the function parameters are not passed up the
stack, the value of the parameters are not available when you debug the core file.
You can analyze the following lines from the assembler dump to view information about
the function parameters:
0x23fc <function_abort+8>: stw %r26,-0x64(%sr0,%sp)
0x2400 <function_abort+12>: stw %r25,-0x68(%sr0,%sp)

These lines provide information about the location of the function parameters in the stack.
This calling convention for the function parameters is defined by the PA-RISC runtime
architecture.
In the case of Itanium architecture, the arguments are normally passed through the stacked
general registers, gr32, and gr33.
For example:
r26 == arg0, r25==arg1, r24==arg2, r23==arg3

The convenience variable, $sp, stores the stack pointer in WDB. The disassembly output
for the function displays the addresses of the arguments that are relative to the stack pointer.
Hence, arg0 is stored at $sp-0x64 on the stack and arg1 is stored at $sp-0x68.

6. Examine the contents of the required memory location.
The x command enables you to examine the contents at a specified memory location.
You can use the x command to view the contents of arg0 at $sp-0x64, and arg1 at
$sp-0x68.
For example:
(gdb) x/x $sp-0x68
0x7f7e6738: 0x00000020
(gdb) x/x $sp-0x64
0x7f7e673c: 0x7f7e6688

7. To determine the value of the variables, you must analyze the contents of the required
memory location.
In this example, the value of arg1 is an integer, and hence this value is 32(0x20).
The argument, arg0, is a pointer to a structure. To arrive at the value of arg0, the offsets
for the variables in the structure must be determined manually.
Following are the offsets for the variables in the structure st_one (in case of the PA-RISC
32–bit binary):

Examples Illustrating Core File Debugging 33

struct st_one {
 int one; +0x0
 char *two; +0x4
 struct st_two *three; +0x8
 int *four; +0xC
 char *five; +0x10
};

Following are two methods to determine the values in the structure:

NOTE: If the debug information is available, these offsets can be displayed by using the
ptype -v struct st_one command.

• Method 1:
In thismethod, thememory location of the fields in the structure st_one are calculated
by determining the offsets for each field relative to the address location of arg0. The
contents of the calculated address locations are displayed by using the x command.
The following debugging session illustrates how to determine the values in the structure,
st_one:
— To display the char* value at the second field in the structure, enter the following

command at the gdb prompt:
(gdb) x/x 0x7f7e6688+0x4
0x7f7e668c: 0x40001140

Todisplay thestring value at the displayed address, enter the following command
at the gdb prompt:
(gdb) x/s 0x40001140
0x40001140 <__d_trap_fptr+292>: "NOT!"

— To display the int* value in the fourth field, enter the following command at the
gdb prompt:
(gdb) x/x 0x7f7e6688+0xc
0x7f7e6694: 0x7f7e6688

To display the int value at this address, enter the following command at the gdb
prompt:
(gdb) x/x 0x7f7e6688
0x7f7e6688: 0x00000011

— To display the char* value at the last field in the structure, enter the following
command at the gdb prompt:
(gdb) x/x 0x7f7e6688+0x10
0x7f7e6698: 0x40001120

To display the char value at this address, enter the following command at the gdb
prompt:
(gdb) x/s 0x40001120
0x40001120 <__d_trap_fptr+260>: "The meaning"

— To display the address of the st_two structure, enter the following command at
the gdb prompt:
(gdb) x/x 0x7f7e6688+0x8
0x7f7e6690: 0x7f7e669c

Similarly, the offsets for the following structure st_two are calculated:
struct st_two {
 char *a; +0x0
 int b; +0x4
 float c; +0x8

34

 char *d; +0xC
};

The values of the variables in the structure st_two are determined by using these
offsets, as follows:
— To examine the first word of the structure st_two, enter the following command

at the gdb prompt:
(gdb) x/x 0x7f7e669c
0x7f7e669c: 0x40001130

To display the string value at this address, enter the following command at the
gdb prompt:
gdb) x/s 0x40001130
0x40001130 <__d_trap_fptr+276>: "of life"

— To examine the secondword of the structurest_two, enter the following command
at the gdb prompt:
(gdb) x/x 0x7f7e669c+0x4
0x7f7e66a0: 0x00000063

— To display the float value at the third word, enter the following command at the
gdb prompt:
(gdb) x/f 0x7f7e669c+0x8
0x7f7e66a4: 19.2099991

— To display the char* value at the fourth word, enter the following command at
the gdb prompt:
(gdb) x/x 0x7f7e669c+0xc
0x7f7e66a8: 0x40001138

Todisplay thestring value at the displayed address, enter the following command
at the gdb prompt:
(gdb) x/s 0x40001138
0x40001138 <__d_trap_fptr+284>: "is 42"

— To display the address of the structure, enter the following command at the gdb
prompt:
(gdb) x/x $sp-0x64
0x7f7e673c: 0x7f7e6688

To display the int value at the start of the structure, enter the following command
at the gdb prompt:
(gdb) x/x 0x7f7e6688
0x7f7e6688: 0x00000011

• Method 2:
In this method, you can use the gdb convenience variables to store and manipulate
memory addresses. You can use the show conv command to view the current values
of the convenience variables. The nomenclature of all convenience variables is such that
they start with the $ symbol. The following debugging session illustrates this method:
— To set$my_arg0 as the value pointed by$sp-0x64, enter the following command

at the gdb prompt:
(gdb) set $my_arg0=*($sp-0x64)

To examine the contents of $my_arg0, enter the following command at the gdb
prompt:

Examples Illustrating Core File Debugging 35

(gdb) x/x $my_arg0
0x7f7e6688: 0x00000011

— To display the string value at $my_arg0+4, enter the following command at the
gdb prompt:
(gdb) x/s *($my_arg0+4)
0x40001140 <__d_trap_fptr+292>: "NOT!"

— To store the value pointed by $my_arg0+0x8 in $xtra , enter the following
command at the gdb prompt:
(gdb) set $xtra=*($my_arg0+0x8)

— To display the int value pointed to by $my_arg0+0xc , enter the following
command at the gdb prompt:
(gdb) x/x *($my_arg0+0xc)
0x7f7e6688: 0x00000011

— To display the string value pointed to by $my_arg0+0x10, enter the following
command at the gdb prompt:
(gdb) x/s *($my_arg0+0x10)
0x40001120 <__d_trap_fptr+260>: "The meaning"

— To display the string value pointed to by $xtra, enter the following command
at the gdb prompt:
(gdb) x/s *($xtra)
0x40001130 <__d_trap_fptr+276>: "of life"

— To display the int value at $xtra+0x4, enter the following command at the gdb
prompt:
(gdb) x/x $xtra+0x4
0x7f7e66a0: 0x00000063

— To display the float value at $xtra+0x8, enter the following command at the
gdb prompt:
(gdb) x/f $xtra+0x8
0x7f7e66a4: 19.2099991

— To display the string value pointed to by $xtra+0xC , enter the following
command at the gdb prompt:
(gdb) x/s *($xtra+0xC)
0x40001138 <__d_trap_fptr+284>: "is 42"

Example 7 Debugging a Core File to View Information on a Global Variable in a C program

In this example, the address, &global_vars, of global_vars is required for debugging. If
the required structure is a pointer, the address of the structure is not required. The address of
the structure is cast to (char*) so that any increments to this address will be 1 byte.
The program in this example uses the global structure, global_vars.
Following is the global structure, global_vars:
struct gvals {
 char *program; +0x0
 int arg_count; +0x4
 char *first_arg; +0x8
 char *path; +0xC
 int secret; +0x10
};
struct gvals global_vars;

Sample Debugging Session

36

1. To store the address ofglobal_vars in the convenience variable,$glob, enter the following
command at the gdb prompt:
(gdb) set $glob= (char*)&global_vars

2. To display the string value pointed to by $glob+0x0, enter the following command at
the gdb prompt:
(gdb) x /s *($glob+0x4)
0x7f7e6000: "./example1"

3. To display the int value at $glob+0x4, enter the following command at the gdb prompt:
(gdb) x/x $glob+0x1
0x40001184 <global_vars+4>: 0x00000001

4. To display the string value pointed to by $glob+0x8, enter the following command at
the gdb prompt:
(gdb) x/s *($glob+0x8)
0x0: Error accessing memory address 0x0: Invalid argument.

This indicates that the variable is a null pointer.

5. To display the string value pointed to by $glob+0xC, enter the following command at the
gdb prompt:
(gdb) x/s *($glob+0xC)
0x7f7e62f9: "/opt/softbench/bin:/usr/bin:/opt/user/bin:
/opt/ansic/bin:/usr/ccs/bin:/usr/contrib/bin:/opt/net/bin:
/opt/fc/bin:/opt/fcms/bin:/opt/upgrade/bin:/opt/pd/bin:/usr/bin/X11:
/usr/contrib/bin/X11:/o"...

6. To display the int value at $glob+0x10 in hexadecimal format, enter the following
command at the gdb prompt:
gdb) x/x $glob+0x10
0x40001190 <global_vars+16>: 0x0001b669

7. To display the int value at $glob+0x10 in decimal format, enter the following command:
((gdb) x/d $glob+0x10
0x40001190 <global_vars+16>: 112233

Examples Illustrating Core File Debugging 37

Example 8 Debugging a Core File Created by a Stripped BinaryWhen the Symbol Table is Available

Sample Program
The program in this example has the following global structure, global_vars:
struct gvals {
 char *program; +0x0
 int arg_count; +0x4
 char *first_arg; +0x8
 char *path; +0xC
 int secret; +0x10
};
struct gvals global_vars;

Sample Debugging Session
This sample debugging session illustrates how to debug a core file that is created by the stripped
binary of this program.
$ nm -x example | grep global_var
global_vars |0x40001180|extern|data |BSS
$ strip example
$./example
Abort(core dump)
$ gdb example core
HP gdb
...
..(no debugging symbols found)...
Core was generated by `example'.
Program terminated with signal 6, Aborted.
(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0xc01082b8 in kill () from /usr/lib/libc.2
(gdb) bt
#0 0xc01082b8 in kill () from /usr/lib/libc.2
#1 0xc00a52e8 in raise () from /usr/lib/libc.2
#2 0xc00e5c8c in abort_C () from /usr/lib/libc.2
#3 0xc00e5ce4 in abort () from /usr/lib/libc.2
#4 0x2394 in <unknown_procedure> () from /home/u492893/examples/./example

The addresss obtained from the output from nm command works only for the main module of
the binary. In the case of the shared libraries, the relocation offset (due to the relocation of the
addresses) must be applied to the addresses that displayed as output for the nmcommand.
The debugger does not provide the function names for stripped binaries, only the program
counter (PC) is displayed.
However, you can use the symbol information from the unstripped program for debugging. The
symbol table is displayed as output from the nm command for the unstripped program.
In this example, the address of the global variable global_vars (0x40001180) is displayed
as output from the nm command, and this address is used for debugging the core file.
(gdb) set $glob=0x40001180
(gdb) x/s *($glob+0x0)
0x7f7e6000: "./example"
(gdb) x/x $glob+0x4
0x40001184: 0x00000001
(gdb) x/s *($glob+0x8)
0x0: Error accessing memory address 0x0: Invalid argument.
(gdb) x/s *($glob+0xc)
0x7f7e62f9: "/opt/softbench/bin:/usr/bin:/opt/butthead/bin:/opt/an
sic/bin:/usr/ccs/bin:/usr/contrib/bin:/opt/nettladm/bin:/opt/fc/bi
n:/opt/fcms/bin:/opt/upgrade/bin:/opt/pd/bin:/usr/bin/X11:/usr/con
trib/bin/X11:/o"...
(gdb) x/d $glob+0x10
0x40001190: 112233

38

Example 9 Debugging of a Core File Created by a Stripped Binary When the Symbol Table is
Available from Another Program

In this example, three copies of a program (program a1, program a2, and program a3) are
compiled and linked with a different order.
For example:
Program a1 is stripped.
Program a2 is an unstripped copy of program a1.
Program a3 is functionally the same as program a1. However, the code and the symbols are in
a different link order.
Using the symbol information from a3 to debug the core file generated by a1 does not provide
reliable symbol information as illustrated in the following example:
$ aCC main.c a.c b.c -o a1
$ aCC b.c main.c a.c -o a3
$ cp a1 a2
$ strip a1
$./a1
Abort(core dump)
$ gdb a1 core
HP gdb
... (Some output dropped)
Core was generated by `a1'.
Program terminated with signal 6, Aborted.
warning: Unable to find __dld_flags symbol in object file.
(no debugging symbols found)...(no debugging symbols found)...
(no debugging symbols found)...#0 0xc01f2740 in kill () from /usr/lib/libc.2

The backtrace of a1 does not display information about the routines, because the program is
stripped.
The symbol information of a2 can be used to analyze the backtrace from a1.
The symbol information from a3 does not provide reliable results, because the link order is
different. Unless the program a3 has a similar link order, the symbol information is not reliable
for debugging the core file created by a1. The version of the compiler and the compiler options
used can also alter the reliability of this approach.
The following example shows the backtrace for a1, a2, and a3.
(gdb) bt
#0 0xc01f2740 in kill () from /usr/lib/libc.2
#1 0xc018fc94 in raise () from /usr/lib/libc.2
#2 0xc01d00dc in abort_C () from /usr/lib/libc.2
#3 0xc01d0134 in abort () from /usr/lib/libc.2
#4 0x2498 in <unknown_procedure> () from /home/shane/test/./a1
#5 0x2430 in <unknown_procedure> () from /home/shane/test/./a1
(gdb) symbol a2
Reading symbols from a2...(no debugging symbols found)...done.
(gdb) bt
#0 0xc01f2740 in kill () from /usr/lib/libc.2
#1 0xc018fc94 in raise () from /usr/lib/libc.2
#2 0xc01d00dc in abort_C () from /usr/lib/libc.2
#3 0xc01d0134 in abort () from /usr/lib/libc.2
#4 0x2498 in b () from /home/shane/test/./a1
#5 0x2430 in main () from /home/shane/test/./a1
(gdb) symbol a3
Reading symbols from a3...(no debugging symbols found)...done.
(gdb) bt
#0 0xc01f2740 in kill () from /usr/lib/libc.2
#1 0xc018fc94 in raise () from /usr/lib/libc.2
#2 0xc01d00dc in abort_C () from /usr/lib/libc.2
#3 0xc01d0134 in abort () from /usr/lib/libc.2

Examples Illustrating Core File Debugging 39

#4 0x2498 in a () from /home/shane/test/./a1
#5 0xc018fc94 in raise () from /usr/lib/libc.2

If the program is built with debug support, you can use the symbol information from this program
to debug the stripped version of the program.

40

	Debugging Core Files Using HP WDB
	Table of Contents
	About This Document
	Intended Audience
	Typographic Conventions
	Related Information
	Introduction
	What Is a Core File?
	Causes for a Core Dump
	Common Signals That Cause Core Dumps
	Using WDB to Debug Core Files
	Support for Invoking GDB Before a Program Aborts
	System Requirements for Core File Debugging

	Commands For Core File Debugging
	Invoking WDB to Debug Core Files
	Setting the Path for the Relevant Shared Libraries
	Common Commands for Core File Debugging

	What is a Symbol Table?
	What is a Stripped Binary?
	Debugging Core Files Created by Stripped Binaries (When the Symbol Table is Available)

	Debugging Core Files Created by Optimized or Stripped Binaries
	Limitations for Debugging Core Files Created by Optimized Binaries
	Limitations for Debugging Core Files Created by Binaries Compiled Without the -g Option
	Limitations for Debugging Core Files Created by Stripped Binaries

	Forcing a Core Dump
	Saving the Core File to a Specific File Name
	Debugging a Core File Created by a Forced Core Dump

	Debugging Core Files From a Different System
	Debugging PA-RISC Core Files on Integrity Systems
	Avoiding Core File Corruption
	Avoiding Core File Corruption for Applications Running HP-UX 11i v1 and HP-UX 11i v2
	Avoiding Core File Corruption for Applications Running HP-UX 11i v3

	Summary
	Examples Illustrating Core File Debugging

