
www.zurich.ibm.com

Zurich Research Laboratory

2 November 2006

Cryptographic Protection for Networked Storage
Systems

Christian Cachin <cca@zurich.ibm.com>

Zurich Research Laboratory

2 2 November 2006 © 2006 IBM Corporation

Overview
■ Networked storage systems

→ NAS, SAN, OBS

■ Design options for security

→ Data in flight & data at rest

■ Block layer

→ Tweakable encryption modes

→ Integrity protection using tweakable encryption

■ Object layer

→ Capabilities in Object Store

■ Filesystem

→ Designs for key management

→ Encryption using lazy revocation and key updating
→ Integrity protection using hash trees

■ Example: a cryptographic SAN file system

Zurich Research Laboratory

3 2 November 2006 © 2006 IBM Corporation

Traditional Storage Systems

app

inode

fs

blk

hba

Direct-attached Storage

Zurich Research Laboratory

4 2 November 2006 © 2006 IBM Corporation

Networked Storage Systems: NAS, OBS, SAN

NAS
(Network-attached Storage)

net

NFS, CIFS
(TCP/IP)

net

fs

hba

inode

blk

fs

app

SAN
(Storage-area Network)

blk

FC, iSCSI

net

blk

hbanet

inode

fs

app

OBS
(Object Storage)

inode

net

OBS-SCSI
(T10)

net

inode

blk

hba

fs

app

Zurich Research Laboratory

5 2 November 2006 © 2006 IBM Corporation

Network-based Storage Devices

Block device
 - read & write blocks
 --
 --
 - device-level access control
 --
 --

Object storage dev.
 - read & write bytes in object
 - create & destroy object
 --
 - object-level access control
 - space allocation
 - backup ops

File server
 - read & write data in file
 - create & destroy file
 - directory operations
 - file/dir-based access control
 - space allocation
 - backup ops

Zurich Research Laboratory

6 2 November 2006 © 2006 IBM Corporation

Security in Networked Storage Systems

■ Existing technology offers little protection

→ Server room only

→ Trusted storage providers, networks, and clients

→ Coarse-grained access control

■ Security is needed

→ Storage as a commodity
→ Networked storage to desktop (iSCSI)

■ Threats

- physical access to disks

- access to network

- authorized machines

- unauthorized machines

 ...

Zurich Research Laboratory

7 2 November 2006 © 2006 IBM Corporation

Design Options for Security

Zurich Research Laboratory

8 2 November 2006 © 2006 IBM Corporation

■ Goals

Confidentiality (no unauthorized access)

Integrity (no unauthorized modification)

Availability

■ Security mechanisms

Encryption

→ Confidentiality based on shared key k

Message-authentication code (MAC)

→ Integrity based on shared key k

Hashing and digital signatures

→ Integrity, w.r.t. reference value v

Access control

→ Confidentiality, integrity, availability

■ Any mechanism may be applied on any layer

Security Toolbox

E E
k k

k k
M M

✔

vH

Zurich Research Laboratory

9 2 November 2006 © 2006 IBM Corporation

■ Storage systems have these layers for good reason

→ Not all security mechanisms are useful and efficient on all layers

■ Challenge is to select the “right” combination

■ Talk outline:

Any Security Mechanism May Be Applied
on Any Layer

key mgmt. &
lazy revocation

tweakable block
encryption

file

object

block

hash trees

hybrid block-
integrity

protection

E M ✔

OBS security
protocol

Zurich Research Laboratory

10 2 November 2006 © 2006 IBM Corporation

Generic Model of a Secure Storage System

client
security
provider

■ Option 1: Protect data in flight

→ Trusted client, trusted storage (untrusted network)

■ Option 2: Protect data at rest

→ Trusted client (untrusted storage and untrusted network)

→ Allows DoS attack, data may be lost

client
security
provider

Zurich Research Laboratory

11 2 November 2006 © 2006 IBM Corporation

■ Encrypt the communication

→ Session, transport or packet layer

→ Secure RPC, SSL, IPsec, FC-SP ...

■ Layer-specific access control on storage device

→ NAS at filesystem layer (exists in AFS, NFSv4 ...)
→ ObjectStore at object layer (in standard)
→ SAN at block layer (proposed)

Security for Networked Storage Systems (1)

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

E EM M

✔

Option 1: Protect the data in flight

Access control

Integrity protection

Encryption

✔

E

M

Zurich Research Laboratory

12 2 November 2006 © 2006 IBM Corporation

■ Encrypt the storage space

→ Encryption and integrity protection for a storage layer

■ Layer-specific cryptography on storage device

→ Typically on low layers: block encryption

- Upcoming disk storage systems

- Available today as security appliance from vendors
Decru/NetApp or NeoScale

Security for Networked Storage Systems (2)

Option 2: Protect the data at rest

Access control

Integrity protection

Encryption

✔

E

H
fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

net net

H E
✔

Zurich Research Laboratory

13 2 November 2006 © 2006 IBM Corporation

■ Encrypt the storage space

→ But don't trust the network
and don't trust the storage device

■ Layer-specific cryptography on client

→ Typically on higher layers: cryptographic filesystems

- Available today in local cryptographic filesystems

(CFS, SFS, Linux loopback encryption, Windows EFS)

- Not yet widely available for distributed filesystems

Security for Networked Storage Systems (3)

Combining Options 1 & 2:
Protecting data in flight & at rest

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

H E
✔

Zurich Research Laboratory

14 2 November 2006 © 2006 IBM Corporation

■ Encryption: keys?

Separate security admin server

Encrypted with user/group public key

Held by hardware module

■ Integrity verification: reference values?

Integrated in directory

Inode tree is hash tree

Digital signatures under user/group public-key

■ Access control: credentials?

Separate security admin server (Kerberos, ObjStore admin)

Design Dimensions

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

H E
✔

Zurich Research Laboratory

15 2 November 2006 © 2006 IBM Corporation

■ Storage systems have these layers for good reason

→ Not all security mechanisms are useful and efficient on all layers

■ Challenge is to select the “right” combination

Talk Outline

key mgmt. &
lazy revocation

tweakable block
encryption

file

object

block

hash trees

hybrid block-
integrity

protection

E M ✔

OBS security
protocol

Zurich Research Laboratory

16 2 November 2006 © 2006 IBM Corporation

Block Layer

Zurich Research Laboratory

17 2 November 2006 © 2006 IBM Corporation

Encryption at the Block Layer

■ “Sector” encryption, 512-byte blocks

■ Transparent to storage system → no extra space available

■ IEEE SISW standardization effort: P1619, P1619.1, ...

app

inode

fs

blk

E

Zurich Research Laboratory

18 2 November 2006 © 2006 IBM Corporation

Using CBC Mode

■ IV chosen at random → must be stored, doesn't work

■ Derive IV from offset of sector on disk

IV = EK(sector offset | disk LUN)

P1

E

C1

K

IV P1

E

C1

K . . .

IV

Zurich Research Laboratory

19 2 November 2006 © 2006 IBM Corporation

Tweakable Block Encryption [LRW02]

■ EK() is a deterministic permutation (after picking K)

■ Tweakable EK,T() is a family of independent such permutations

→ T = LUN | offset of sector on LUN

■ Change of even one bit → decrypted P' completely independent of C

P

E

C

K
(secret)

P

E

C

K T
(public)

EK() is PRP EK,T() is a PRP for every T

Traditional Tweakable

Zurich Research Laboratory

20 2 November 2006 © 2006 IBM Corporation

Using Tweakable Encryption Mode

■ Turns an ordinary narrow-block cipher E (16-byte blocks) into a
tweakable, wide-block cipher (512-byte blocks).

■ EME [HR04],
calls to E are parallelizable:

■ EME requires ≈2 block cipher calls per plaintext block (better is ≈1)

■ Mode by [LRW02] is more efficient, but less secure

Zurich Research Laboratory

21 2 November 2006 © 2006 IBM Corporation

Integrity Protection at the Block Layer

■ No extra space available → really problematic for integrity

■ All integrity protection and data authentication methods require extra
space for a tag or a hash value

■ If there was space, use a MAC or a hash tree ...

app

inode

fs

blk

M

Zurich Research Laboratory

22 2 November 2006 © 2006 IBM Corporation

Hybrid Integrity Protection at the Block Layer [ORY05]

■ Data is encrypted

■ Use tweakable encryption mode on wide block (sector size, 512B)

■ Idea

If data contains redundancy, then any modification
of ciphertext is detectable because decrypted
plaintext will look random.

→ “Redundant” blocks are not extra protected for modification detection

→ “Random” blocks are protected in traditional way

■ Needs a heuristic test for “redundancy”

Zurich Research Laboratory

23 2 November 2006 © 2006 IBM Corporation

Writing Data

app

inode

fs

blk

E

K

T

Looks
random?

If yes:

M
■ If block looks redundant,

just store it.

■ If block looks random,
authenticate it using extra
trusted storage.

Zurich Research Laboratory

24 2 November 2006 © 2006 IBM Corporation

Reading Data

app

inode

fs

blk

D

K

T

Looks
random?

If yes:

M=

■ If decrypted block looks random,
then hash it and compare it with
authenticated value.

■ Allows replay attack with previous
content of sector.

Zurich Research Laboratory

25 2 November 2006 © 2006 IBM Corporation

Discussion of Hybrid Scheme

■ Performance depends on payload data

■ Suffers from replay attacks

■ Depends on estimator for redundancy

→ Simple 1-st order entropy test on 8-bit blocks in 1024-byte sector
● Threshold set to 7.7 bits
● 98% of blocks from file system trace have observed entropy < 7.7

→ Saves 98% storage space compared to hashing every block
(Or: protects integrity of 98% of observed data.)

■ Cannot achieve ideal security for arbitrary payload

Zurich Research Laboratory

26 2 November 2006 © 2006 IBM Corporation

Object Layer

Zurich Research Laboratory

27 2 November 2006 © 2006 IBM Corporation

Object Store Security Protocol [ACF+02]

client

security
manager

(req, cap, tag, data) →

security
context

authentication
request

← (reply, data)

OSD

■ Capability-based protocol to authenticate requests and traffic
between client and object-storage device (OSD)

■ Key establishment protocol between OSD and security mgr.

■ Protocol between client and security mgr. specific to file system

Zurich Research Laboratory

28 2 November 2006 © 2006 IBM Corporation

Protocol Features

■ Security methods

NONE: --

CAPKEY: authenticate requests at OSD level, no transport security

→ tag computed only over cap

CMDRSP: above plus transport integrity for request and reply

→ tag computed over capability and request

ALLDATA: above plus transport integrity for payload data

→ tag computed over capability, request, and data

■ May replace IPsec for iSCSI or FC-SEC for Fibre Channel
(also duplicates some of their functionality)

Zurich Research Laboratory

29 2 November 2006 © 2006 IBM Corporation

OSD Data Types

■ Object hierarchy

OBS → Partition → Object

■ Key hierarchy

Master key: to initialize OSD and create root key

Root key: to manage partitions and their keys

Partition key: only to create per-partition working key

Working key: per partition, changed frequently, useful for revocation (among
other uses), protects all objects in partition

Zurich Research Laboratory

30 2 November 2006 © 2006 IBM Corporation

OBS Security Protocol Details (CAPKEY)
■ PRF F

■ Capabilities

(obj, exptime, permissions, nonce)

■ Client requests credential from security manager and receives

cred = (cap, Kcap)

where Kcap = FK(cap) under appropriate partition working key K

■ Client sends

(req, cap, tag)

to OSD, where

tag = FKcap(cap | client | OSD)

■ OSD verifies that

1. req is allowed by cap in partition

2. validates tag from its own id, using key K' = FK(cap) with working key K of
current partition

Zurich Research Laboratory

31 2 November 2006 © 2006 IBM Corporation

File Layer

Zurich Research Laboratory

32 2 November 2006 © 2006 IBM Corporation

Key Management in Cryptographic File Systems

■ Two approaches

On-line and centralized

- Only symmetric-key crypto

- Simple and efficient

- Limited scope and scalability

- Ex. Cryptographic SAN.FS [PC06]

Off-line and de-centralized

- Requires public-key crypto

- Complex, computationally expensive

- Scalable

- Ex. SFS [FKM02], Windows EFS, Plutus [KRS+03], Sirius [GSMB03] ...

Zurich Research Laboratory

33 2 November 2006 © 2006 IBM Corporation

De-centralized Key Management

■ Users have SK/PK pair

■ Groups have SK/PK pair; every member of group knows SK

■ Files encrypted using FEK with block cipher

■ Confidentiality: Store FEK encrypted in meta-data

→ Encrypted under every PK of every user/group that has access

Example: File X, encrypted with FEKX

owner: A, rwx, EPKA
(FEKX),

group: G, r-w, EPKG
(FEKX),

world: ---

■ Integrity: Add FSKX / FVKX, key pair for digital signatures, to X

→ Store FSK like this in every encrypted file

■ Drawback: key revocation is tedious

Zurich Research Laboratory

34 2 November 2006 © 2006 IBM Corporation

Key Revocation

■ User revoked → change all keys that were known to user

→ Re-encrypt all data with fresh keys

■ Very expensive and disruptive operation

■ Idea: Lazy Revocation [F99]

→ Re-encrypt data only when it changes after revocation, keep old keys
around.

■ All versions of a key must remain accessible.

Zurich Research Laboratory

35 2 November 2006 © 2006 IBM Corporation

Lazy Revocation [KRS+03]

B2 B3B1 ... Bn

K1

K1

u u' u''

users

K1

center storage

K1S1(K1)

S1(K1,K2)

time

u' is revoked

u'' writes B2 K2

K2 K2--

u'' is revoked

u writes B3 ...

K3 ----S1(K1,K2,K3)

K3

Zurich Research Laboratory

36 2 November 2006 © 2006 IBM Corporation

Key Updating Schemes for Lazy Revocation

seed S0

S1

S2

ST

M1

M2

MT

center user

state

user key

... ...

Derive()
K1

K2

KT

Extract()

...

FEK

Init()

■ Requirements

→ User can obtain K1 ... Kt from Mt

→ Adversary with Mt cannot distinguish Kt+1 from uniformly random string

Zurich Research Laboratory

37 2 November 2006 © 2006 IBM Corporation

Formalization [BCO05, BCO06, FKK06]

■ Key updating scheme for T periods

KUT = (Init, Update, Derive, Extract)

■ Metrics of interest

→ Time of Update(), Derive(), and Extract()

→ Size of center state St

→ Size of user key Mt

Zurich Research Laboratory

38 2 November 2006 © 2006 IBM Corporation

Composition of Key Updating Schemes [BCO06]

■ Addition

KU1T1 ⊕ KU2T2 = KU⊕T1+T2

Construction

→ First T1 intervals use KU1

→ Subsequent T2 intervals use KU2 and include MT1 in user key

■ Multiplication

KU1T1 ⊗ KU1T2 = KU⊗T1 · T2

Construction

→ Every key generated with KU1 is used to seed an instance of KU2

Zurich Research Laboratory

39 2 November 2006 © 2006 IBM Corporation

Constructions

■ Chaining construction

■ Trapdoor permutation-based

■ Tree construction

Zurich Research Laboratory

40 2 November 2006 © 2006 IBM Corporation

■ Using pseudo-random generator G

■ Drawback: Fixed T

Chaining Construction (“Hash Chain”)

S1M1

ST-1MT-1

STMT

seed

G

G

...

K1

KT-1

KT

G

State Update Derive Extract

seed 0 O(T) PRG O(T) PRG

Zurich Research Laboratory

41 2 November 2006 © 2006 IBM Corporation

■ Using trap-door permutation TDP (f, f-1), where f is easy and f-1 is
hard without secret key, hash function h() in ROM

Trapdoor Permutation Construction [KRS+03]

S1M1

...

K1

f-1 f

h

S2 K2

f-1 f

h
M2

...

f-1 f

ST KT

f-1 f

h
MT

State Update Derive Extract

const. O(T) TDPseed TDP

Advantage: Flxible T

Zurich Research Laboratory

42 2 November 2006 © 2006 IBM Corporation

■ Using PRG G and PRF F

■ User key Mt is smallest set of nodes needed to derive K1 ... Kt

■ Fixed T, but state parameters only logarithmic in T

Tree Construction [BCO06]

V

V0

V10

K1

V1

V11

G

V00 V01

F

G G

K2

F
...

State Update Derive Extract

O(log T) O(log T)
PRG

0 O(log T)
PRG

Zurich Research Laboratory

43 2 November 2006 © 2006 IBM Corporation

Comparison of Key Updating Schemes

■ Trapdoor scheme using RSA-1024

■ PRF/PRG using AES-128

■ Average times [ms] measured on Intel 2.4 GHz Xeon

Scheme T
Derive +
Update

Extract

Chaining 1024 1.28 1.24

Trapdoor 1024 15.4 15.2

Tree 1024 0.015 0.006

Tree 216 0.015 0.008Tree

Tree 225 0.015 0.01Tree

Zurich Research Laboratory

44 2 November 2006 © 2006 IBM Corporation

Integrity Protection

■ Storage server not trusted

■ Associate short reference value v with long file

→ Store v on trusted server, with file meta-data

→ Sign v with digital signature

■ Hash function?

v = H(file)

→ Infeasible for long files

→ No random access

■ Solution:

→ Hash tree [Merkle]

Zurich Research Laboratory

45 2 November 2006 © 2006 IBM Corporation

Integrity Protection Using Hash Trees

■ Merkle hash trees

→ Root hash value represents all
data blocks of the file

→ Root hash value in trusted storage

→ Tree stored on untrusted storage

■ Reads and updates take O(log n) extra
operations

■ With local buffering, sequential read or
update of all blocks has constant
overhead

H H H H H H

H H H H H H H H H H H H

H

root hash value

Data
block

Data
block

Data
block

Data
block

Data
block

Data
block

Zurich Research Laboratory

46 2 November 2006 © 2006 IBM Corporation

Implementing Hash Trees

■ Much more complex than encryption in file system

→ Dual and mutually dependent data paths

■ Degree may vary (2 ... 128), determine experimentally (≈16)

■ Serialize nodes using pre-order enumeration

→ Sparse allocation of maximum-size tree
→ Takes care of file holes

(3,0)

3 7 11

2

H

H

1

H

25

16 20 24

15

H

28

H

4 5 6

H

12 13 14

H

8 9 10

H

21 22 23

H

17 18 19

(0,15)(0,0)

(1,3)

(2,1)

(0,10)
H H H

.

Zurich Research Laboratory

47 2 November 2006 © 2006 IBM Corporation

Example: A Cryptographic SAN File System [PC06]

Zurich Research Laboratory

48 2 November 2006 © 2006 IBM Corporation

■ SAN today:

Clients access block storage devices directly

→ Fibre Channel (SCSI)

Static configuration

→ OS sees a local block storage device

Static access control

→ zoning & fencing in FC switch

Inside server room only

SANs and SAN File Systems

SAN

clientclient

Zurich Research Laboratory

49 2 November 2006 © 2006 IBM Corporation

■ Virtualized block storage space

■ Block access managed by metadata server (MDS)

■ Single filesystem name space

■ Heterogeneous clients

SAN Filesystems (e.g. IBM's StorageTank)

SAN

LAN

metadata

net

app

vfs

blk

net

net

app

vfs

blk

net

net

MDS
(clustered)

Un*x client W2k client

Zurich Research Laboratory

50 2 November 2006 © 2006 IBM Corporation

■ Integrity verification & encryption in client

→ Scalable

→ End-to-end security

■ MDS is trusted, provides
encryption keys & reference data

→ Integrate key management with
metadata

→ No modification of storage interface

■ Needs
- secure LAN connection (IPsec)
- trusted client kernels

Design of a Cryptographic SAN Filesystem

LAN

SAN

clientclient

MDS

E EH H

✔ ✔

Access control

Integrity protection

Encryption

✔

E

H

Zurich Research Laboratory

51 2 November 2006 © 2006 IBM Corporation

Raw Peak Performance with Encryption (dd)

■SAN.FS client 8.9 on
 - IBM x336
 - dual Xeon 3.2GHz
 (4 CPUs in Linux)
 - 3 GB RAM
 - Linux 2.6.6
■iSCSI 4.0.1.7 over
 - 1Gbit/s Ethernet
■Storage target on
 - IBM x346
 - dual Xeon 3.6GHz

Kernel threads
used by STFS pager

Zurich Research Laboratory

52 2 November 2006 © 2006 IBM Corporation

Application Performance with Encryption (postmark)

■SAN.FS client 8.9 on
 - IBM x336
 - dual Xeon 3.2GHz
 (4 CPUs in Linux)
 - 3 GB RAM
 - Linux 2.6.6
■iSCSI 4.0.1.7 over
 - 1Gbit/s Ethernet
■Storage target on
 - IBM x346
 - dual Xeon 3.6GHz

postmark performed 5000
transactions on 2000 ran-
domly sized files between
1k and max. file size

Zurich Research Laboratory

53 2 November 2006 © 2006 IBM Corporation

Integrity Protection

■ Data is hashed on client to digest values

→ Digest values stored at MDS

→ Secure transfer of digests

→ Integrity protected in flight and at rest,
modifications are detected

■ Storage interface unmodified

→ Impossible to prevent overwrites,
but violations are detected

■ SHA-1, SHA-256 or others

→ NIST standards, fast & secure

→ ~ 260 MByte/s in software (Xeon 3GHz)

■ Using hash tree

SAN

MDS

H

v

H

v

Zurich Research Laboratory

54 2 November 2006 © 2006 IBM Corporation

■ Any security mechanism can be applied on all layers

■ Challenge is to select the “right” combination

Summary

key mgmt. &
lazy revocation

tweakable block
encryption

file

object

block

hash trees

hybrid block-
integrity

protection

E M ✔

OBS security
protocol

Zurich Research Laboratory

55 2 November 2006 © 2006 IBM Corporation

Thank you!

■ More information?

http://www.zurich.ibm.com/~cca

<cca@zurich.ibm.com>

Zurich Research Laboratory

56 2 November 2006 © 2006 IBM Corporation

References (1)

■ [ACF+02] Alain Azagury, Ran Canetti, Michael Factor, Shai Halevi, Ealan
Henis, Dalit Naor, Noam Rinetzky, Ohad Rodeh, and Julian Satran. A two
layered approach for securing an object store network. In Proc. 1st
International IEEE Security in Storage Workshop (SISW 2002), 2002.

■ [BCO05] Michael Backes, Christian Cachin, and Alina Oprea. Lazy revocation
in cryptographic file systems. In Proc. 3rd Intl. IEEE Security in Storage
Workshop, pages 1-11, December 2005.

■ [BCO06] Michael Backes, Christian Cachin, and Alina Oprea. Secure key-
updating for lazy revocation. In D. Gollmann, J. Meier, and A. Sabelfeld,
editors, Proc. 11th European Symposium On Research In Computer Security
(ESORICS), number 4189 in Lecture Notes in Computer Science, pages 327-
346. Springer, 2006.

■ [FKK06] Kevin Fu, Seny Kamaram, and Tadayoshi Kohno. Key regression:
Enabling efficient key distribution for secure distributed storage. In Proc.
Network and Distributed Systems Security Symposium (NDSS 2006), 2006.

■ [FKM02] Kevin Fu, Michael Kaminsky, and David Mazières. Using SFS for a
secure network file system. ;login: --- The Magazine of the USENIX
Association, 27(6), December 2002.

Zurich Research Laboratory

57 2 November 2006 © 2006 IBM Corporation

References (2)

■ [Fu99] Kevin Fu. Group sharing and random access in cryptographic storage
file systems. Master Thesis, MIT LCS, 1999.

■ [GSMB03] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan
Boneh. SiRiUS: Securing remote untrusted storage. In Proc. Network and
Distributed Systems Security Symposium (NDSS 2003), 2003.[HR04] Shai
Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, Topics in Cryptology --- CT-RSA 2004, volume 2964 of
Lecture Notes in Computer Science, pages 292-304. Springer, 2004.

■ [KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and
Kevin Fu. Plutus: Scalable secure file sharing on untrusted storage. In Proc.
2nd USENIX Conference on File and Storage Technologies (FAST 2003),
2003.

■ [LRW02] Moses Liskov, Ronald R. Rivest, and David Wagner. Tweakable
block ciphers. In Moti Yung, editor, Advances in Cryptology: CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 31-46. Springer,
2002.

Zurich Research Laboratory

58 2 November 2006 © 2006 IBM Corporation

References (3)

■ [ORY05] Alina Oprea, Michael K. Reiter, and Ke Yang. Space-efficient block
storage integrity. In Proc. Network and Distributed Systems Security
Symposium (NDSS 2005), 2005.

■ [PC06] Roman Pletka and Christian Cachin. Cryptographic security for a high-
performance distributed file system. Research Report RZ 3661, IBM Research,
September 2006.

Further reading
■ [KK05] Vishal Kher and Yongdae Kim. Securing distributed storage:

Challenges, techniques, and systems. In Proc. Workshop on Storage Security
and Survivability (StorageSS), 2005.

■ [RKS02] Erik Riedel, Mahesh Kallahalla, and Ram Swaminathan. A framework
for evaluating storage system security. In Proc. USENIX Conference on File
and Storage Technologies (FAST 2002), 2002.

■ [WDZ03] Charles P. Wright, Jay Dave, and Erez Zadok. Cryptographic file
systems performance: What you don't know can hurt you. In Proc. 2nd
International IEEE Security in Storage Workshop (SISW 2003), 2003.

