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Overview
■ Networked storage systems

→ NAS, SAN, OBS

■ Design options for security

→ Data in flight & data at rest

■ Block layer

→ Tweakable encryption modes

→ Integrity protection using tweakable encryption

■ Object layer

→ Capabilities in Object Store

■ Filesystem

→ Designs for key management

→ Encryption using lazy revocation and key updating
→ Integrity protection using hash trees

■ Example: a cryptographic SAN file system
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Traditional Storage Systems

app

inode

fs

blk

hba

Direct-attached Storage
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Networked Storage Systems: NAS, OBS, SAN
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Network-based Storage Devices

Block device
 - read & write blocks
 --
 --
 - device-level access control
 --
 --

Object storage dev.
 - read & write bytes in object
 - create & destroy object
 --
 - object-level access control
 - space allocation
 - backup ops

File server
 - read & write data in file
 - create & destroy file
 - directory operations
 - file/dir-based access control
 - space allocation
 - backup ops 
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Security in Networked Storage Systems

■ Existing technology offers little protection

→ Server room only

→ Trusted storage providers, networks, and clients

→ Coarse-grained access control

■ Security is needed

→ Storage as a commodity
→ Networked storage to desktop (iSCSI)

■ Threats

- physical access to disks

- access to network

- authorized machines

- unauthorized machines

  ...
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Design Options for Security
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■ Goals

Confidentiality (no unauthorized access)

Integrity (no unauthorized modification)

Availability

■ Security mechanisms

Encryption

→ Confidentiality based on shared key k

Message-authentication code (MAC)

→ Integrity based on shared key k

Hashing and digital signatures

→ Integrity, w.r.t. reference value v

Access control

→ Confidentiality, integrity, availability

■ Any mechanism may be applied on any layer

Security Toolbox

E E
k k

k k
M M

✔

vH
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■ Storage systems have these layers for good reason

→ Not all security mechanisms are useful and efficient on all layers

■ Challenge is to select the “right” combination

■ Talk outline:

Any Security Mechanism May Be Applied 
on Any Layer

key mgmt. &
lazy revocation

tweakable block
encryption

file

object

block

hash trees

hybrid block-
integrity

protection

E M ✔

OBS security
protocol
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Generic Model of a Secure Storage System

client
security
provider

■ Option 1: Protect data in flight

→ Trusted client, trusted storage (untrusted network)

■ Option 2: Protect data at rest

→ Trusted client (untrusted storage and untrusted network)

→ Allows DoS attack, data may be lost

client
security
provider
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■ Encrypt the communication

→ Session, transport or packet layer

→ Secure RPC, SSL, IPsec, FC-SP ...

■ Layer-specific access control on storage device

→ NAS at filesystem layer (exists in AFS, NFSv4 ...)
→ ObjectStore at object layer (in standard)
→ SAN at block layer (proposed)

Security for Networked Storage Systems (1)

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

E EM M

✔

Option 1: Protect the data in flight

Access control

Integrity protection

Encryption

✔

E

M
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■ Encrypt the storage space

→ Encryption and integrity protection for a storage layer

■ Layer-specific cryptography on storage device

→ Typically on low layers: block encryption

- Upcoming disk storage systems

- Available today as security appliance from vendors
Decru/NetApp or NeoScale

Security for Networked Storage Systems (2)

Option 2: Protect the data at rest

Access control

Integrity protection

Encryption

✔

E

H
fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

net net

H E
✔
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■ Encrypt the storage space

→ But don't trust the network
and don't trust the storage device

■ Layer-specific cryptography on client

→ Typically on higher layers: cryptographic filesystems

- Available today in local cryptographic filesystems

(CFS, SFS, Linux loopback encryption, Windows EFS)

- Not yet widely available for distributed filesystems

Security for Networked Storage Systems (3)

Combining Options 1 & 2:
Protecting data in flight & at rest

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

H E
✔
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■ Encryption: keys?

Separate security admin server

Encrypted with user/group public key

Held by hardware module

■ Integrity verification: reference values?

Integrated in directory

Inode tree is hash tree

Digital signatures under user/group public-key

■ Access control: credentials?

Separate security admin server (Kerberos, ObjStore admin)

Design Dimensions

fs/obj/blk

net net

fs/obj/blk

...

hba

...

app

H E
✔
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■ Storage systems have these layers for good reason

→ Not all security mechanisms are useful and efficient on all layers

■ Challenge is to select the “right” combination

Talk Outline

key mgmt. &
lazy revocation

tweakable block
encryption

file

object

block

hash trees

hybrid block-
integrity

protection

E M ✔

OBS security
protocol
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Block Layer
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Encryption at the Block Layer

■ “Sector” encryption, 512-byte blocks

■ Transparent to storage system → no extra space available

■ IEEE SISW standardization effort: P1619, P1619.1, ...

app

inode

fs

blk

E
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Using CBC Mode

■ IV chosen at random → must be stored, doesn't work

■ Derive IV from offset of sector on disk

IV = EK(sector offset | disk LUN)

P1

E

C1

K

IV P1

E

C1

K . . .

IV
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Tweakable Block Encryption [LRW02]

■ EK() is a deterministic permutation (after picking K)

■ Tweakable EK,T() is a family of independent such permutations

→ T = LUN | offset of sector on LUN

■ Change of even one bit → decrypted P' completely independent of C

P

E

C

K
(secret)

P

E

C

K T
(public)

EK() is PRP EK,T() is a PRP for every T

Traditional Tweakable
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Using Tweakable Encryption Mode

■ Turns an ordinary narrow-block cipher E (16-byte blocks) into a 
tweakable, wide-block cipher (512-byte blocks).

■ EME [HR04],
calls to E are parallelizable:

■ EME requires ≈2 block cipher calls per plaintext block (better is ≈1)

■ Mode by [LRW02] is more efficient, but less secure
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Integrity Protection at the Block Layer

■ No extra space available → really problematic for integrity

■ All integrity protection and data authentication methods require extra 
space for a tag or a hash value

■ If there was space, use a MAC or a hash tree ...

app

inode

fs

blk

M
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Hybrid Integrity Protection at the Block Layer [ORY05]

■ Data is encrypted

■ Use tweakable encryption mode on wide block (sector size, 512B)

■ Idea

If data contains redundancy, then any modification
of ciphertext is detectable because decrypted
plaintext will look random.

→ “Redundant” blocks are not extra protected for modification detection

→ “Random” blocks are protected in traditional way

■ Needs a heuristic test for “redundancy”
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Writing Data

app

inode

fs

blk

E

K

T

Looks 
random?

If yes:

M
■ If block looks redundant,

just store it.

■ If block looks random, 
authenticate it using extra 
trusted storage.
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Reading Data

app

inode

fs

blk

D

K

T

Looks
random?

If yes:

M=

■ If decrypted block looks random, 
then hash it and compare it with 
authenticated value.

■ Allows replay attack with previous 
content of sector.
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Discussion of Hybrid Scheme

■ Performance depends on payload data

■ Suffers from replay attacks

■ Depends on estimator for redundancy

→ Simple 1-st order entropy test on 8-bit blocks in 1024-byte sector
● Threshold set to 7.7 bits
● 98% of blocks from file system trace have observed entropy < 7.7

→ Saves 98% storage space compared to hashing every block
(Or: protects integrity of 98% of observed data.)

■ Cannot achieve ideal security for arbitrary payload
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Object Layer
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Object Store Security Protocol [ACF+02]

client

security
manager

(req, cap, tag, data) →

security
context

authentication
request

← (reply, data)

OSD

■ Capability-based protocol to authenticate requests and traffic
between client and object-storage device (OSD)

■ Key establishment protocol between OSD and security mgr.

■ Protocol between client and security mgr. specific to file system
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Protocol Features

■ Security methods

NONE: --

CAPKEY: authenticate requests at OSD level, no transport security

→ tag computed only over cap

CMDRSP: above plus transport integrity for request and reply

→ tag computed over capability and request

ALLDATA: above plus transport integrity for payload data

→ tag computed over capability, request, and data

■ May replace IPsec for iSCSI or FC-SEC for Fibre Channel
(also duplicates some of their functionality)
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OSD Data Types

■ Object hierarchy

OBS → Partition → Object

■ Key hierarchy

Master key: to initialize OSD and create root key

Root key: to manage partitions and their keys

Partition key: only to create per-partition working key

Working key: per partition, changed frequently, useful for revocation (among 
other uses), protects all objects in partition
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OBS Security Protocol Details (CAPKEY)
■ PRF F

■ Capabilities

(obj, exptime, permissions, nonce)

■ Client requests credential from security manager and receives

cred = (cap, Kcap)

where Kcap = FK(cap) under appropriate partition working key K

■ Client sends

(req, cap, tag)

to OSD, where

tag = FKcap(cap | client | OSD)

■ OSD verifies that

1. req is allowed by cap in partition

2. validates tag from its own id, using key K' = FK(cap) with working key K of 
current partition
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File Layer
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Key Management in Cryptographic File Systems

■ Two approaches

On-line and centralized

- Only symmetric-key crypto

- Simple and efficient

- Limited scope and scalability

- Ex. Cryptographic SAN.FS [PC06]

Off-line and de-centralized

- Requires public-key crypto

- Complex, computationally expensive

- Scalable

- Ex. SFS [FKM02], Windows EFS, Plutus [KRS+03], Sirius [GSMB03] ...
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De-centralized Key Management

■ Users have SK/PK pair

■ Groups have SK/PK pair; every member of group knows SK

■ Files encrypted using FEK with block cipher

■ Confidentiality: Store FEK encrypted in meta-data

→ Encrypted under every PK of every user/group that has access

Example: File X, encrypted with FEKX

owner: A, rwx, EPKA
(FEKX), 

group: G, r-w, EPKG
( FEKX), 

world:    ---

■ Integrity: Add FSKX / FVKX, key pair for digital signatures, to X

→ Store FSK like this in every encrypted file

■ Drawback: key revocation is tedious
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Key Revocation

■ User revoked → change all keys that were known to user

→ Re-encrypt all data with fresh keys

■ Very expensive and disruptive operation

■ Idea: Lazy Revocation [F99]

→ Re-encrypt data only when it changes after revocation, keep old keys 
around.

■ All versions of a key must remain accessible.
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Lazy Revocation [KRS+03]

B2 B3B1 ... Bn

K1

K1

u u' u''

users

K1

center storage

K1S1(K1)

S1(K1,K2)

time

u' is revoked

u'' writes B2 K2

K2 K2--

u'' is revoked

u writes B3 ...

K3 ----S1(K1,K2,K3)

K3
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Key Updating Schemes for Lazy Revocation

seed S0

S1

S2

ST

M1

M2

MT

center user

state

user key

... ...

Derive()
K1

K2

KT

Extract()

...

FEK

Init()

■ Requirements

→ User can obtain K1 ... Kt from Mt

→ Adversary with Mt cannot distinguish Kt+1 from uniformly random string
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Formalization [BCO05, BCO06, FKK06]

■ Key updating scheme for T periods

KUT = (Init, Update, Derive, Extract)

■ Metrics of interest

→ Time of Update(), Derive(), and Extract()

→ Size of center state St

→ Size of user key Mt
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Composition of Key Updating Schemes [BCO06]

■ Addition

KU1T1 ⊕ KU2T2   =   KU⊕T1+T2

Construction

→ First T1 intervals use KU1

→ Subsequent T2 intervals use KU2 and include MT1 in user key

■ Multiplication

KU1T1 ⊗ KU1T2   =   KU⊗T1 · T2

Construction

→ Every key generated with KU1 is used to seed an instance of KU2
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Constructions

■ Chaining construction

■ Trapdoor permutation-based

■ Tree construction
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■ Using pseudo-random generator G

■ Drawback: Fixed T

Chaining Construction (“Hash Chain”)

S1M1

ST-1MT-1

STMT

seed

G

G

...

K1

KT-1

KT

G

State Update Derive Extract

seed 0 O(T) PRG O(T) PRG
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■ Using trap-door permutation TDP (f, f-1), where f is easy and f-1 is 
hard without secret key, hash function h() in ROM

Trapdoor Permutation Construction [KRS+03]

S1M1

...

K1

f-1 f

h

S2 K2

f-1 f

h
M2

...

f-1 f

ST KT

f-1 f

h
MT

State Update Derive Extract

const. O(T) TDPseed TDP

Advantage: Flxible T
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■ Using PRG G and PRF F

■ User key Mt is smallest set of nodes needed to derive K1 ... Kt

■ Fixed T, but state parameters only logarithmic in T

Tree Construction [BCO06]

V

V0

V10

K1

V1

V11

G

V00 V01

F

G G

K2

F
...

State Update Derive Extract

O(log T) O(log T)
PRG

0 O(log T)
PRG
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Comparison of Key Updating Schemes

■ Trapdoor scheme using RSA-1024

■ PRF/PRG using AES-128

■ Average times [ms] measured on Intel 2.4 GHz Xeon

Scheme T
Derive +
Update

Extract

Chaining 1024 1.28 1.24

Trapdoor 1024 15.4 15.2

Tree 1024 0.015 0.006

Tree 216 0.015 0.008Tree

Tree 225 0.015 0.01Tree
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Integrity Protection

■ Storage server not trusted

■ Associate short reference value v with long file

→ Store v on trusted server, with file meta-data

→ Sign v with digital signature

■ Hash function?

v = H(file)

→ Infeasible for long files

→ No random access

■ Solution:

→ Hash tree [Merkle]
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Integrity Protection Using Hash Trees

■ Merkle hash trees

→ Root hash value represents all
data blocks of the file

→ Root hash value in trusted storage

→ Tree stored on untrusted storage

■ Reads and updates take O(log n) extra 
operations

■ With local buffering, sequential read or 
update of all blocks has constant 
overhead

H H H H H H

H H H H H H H H H H H H

H

root hash value

Data
block

Data
block

Data
block

Data
block

Data
block

Data
block
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Implementing Hash Trees

■ Much more complex than encryption in file system

→ Dual and mutually dependent data paths

■ Degree may vary (2 ... 128), determine experimentally (≈16)

■ Serialize nodes using pre-order enumeration

→ Sparse allocation of maximum-size tree
→ Takes care of file holes

(3,0)

3 7 11

2

H

H

1

H

25

16 20 24

15

H

28

H

4 5 6

H

12 13 14

H

8 9 10

H

21 22 23

H

17 18 19

(0,15)(0,0)

(1,3)

(2,1)

(0,10)
H H H

. . . . . .



Zurich Research Laboratory

47 2 November 2006 © 2006 IBM Corporation

Example: A Cryptographic SAN File System [PC06]
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■ SAN today:

Clients access block storage devices directly

→ Fibre Channel (SCSI)

Static configuration

→ OS sees a local block storage device

Static access control

→ zoning & fencing in FC switch

Inside server room only

SANs and SAN File Systems

SAN

clientclient
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■ Virtualized block storage space

■ Block access managed by metadata server (MDS)

■ Single filesystem name space 

■ Heterogeneous clients

SAN Filesystems (e.g. IBM's StorageTank)

SAN

LAN

metadata

net

app

vfs

blk

net

net

app

vfs

blk

net

net

MDS
(clustered)

Un*x client W2k client
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■ Integrity verification & encryption in client

→ Scalable

→ End-to-end security

■ MDS is trusted, provides
encryption keys & reference data

→ Integrate key management with 
metadata

→ No modification of storage interface

■ Needs 
- secure LAN connection (IPsec)
- trusted client kernels

Design of a Cryptographic SAN Filesystem

LAN

SAN

clientclient

MDS

E EH H

✔ ✔

Access control

Integrity protection

Encryption

✔

E

H
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Raw Peak Performance with Encryption (dd)

■SAN.FS client 8.9 on
 - IBM x336 
 - dual Xeon 3.2GHz
   (4 CPUs in Linux)
 - 3 GB RAM
 - Linux 2.6.6
■iSCSI 4.0.1.7 over 
 - 1Gbit/s Ethernet
■Storage target on
 - IBM x346
 - dual Xeon 3.6GHz

Kernel threads 
used by STFS pager
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Application Performance with Encryption (postmark)

■SAN.FS client 8.9 on
 - IBM x336 
 - dual Xeon 3.2GHz
   (4 CPUs in Linux)
 - 3 GB RAM
 - Linux 2.6.6
■iSCSI 4.0.1.7 over 
 - 1Gbit/s Ethernet
■Storage target on
 - IBM x346
 - dual Xeon 3.6GHz

postmark performed 5000
transactions on 2000 ran-
domly sized files between
1k and max. file size
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Integrity Protection

■ Data is hashed on client to digest values

→ Digest values stored at MDS

→ Secure transfer of digests

→ Integrity protected in flight and at rest,
modifications are detected

■ Storage interface unmodified

→ Impossible to prevent overwrites,
but violations are detected

■ SHA-1, SHA-256 or others

→ NIST standards, fast & secure

→ ~ 260 MByte/s in software (Xeon 3GHz)

■ Using hash tree

SAN

MDS

H

v

H

v
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■ Any security mechanism can be applied on all layers

■ Challenge is to select the “right” combination

Summary

key mgmt. &
lazy revocation

tweakable block
encryption

file

object

block

hash trees

hybrid block-
integrity

protection

E M ✔

OBS security
protocol
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Thank you!

■ More information?

http://www.zurich.ibm.com/~cca

<cca@zurich.ibm.com>
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