R WL Tech Note
IRF Configuration

Prepared by
Richard Litchfield
HP Networking Solution Architect

Hewlett-Packard Australia Limited
410 Concord Road
Rhodes NSW 2138

Date Prepared: 22-Aug-13
Please send comments or corrections to: Richard Litchfield, rwl@hp.com.

Proprietary Notice

Hewlett-Packard believes the information contained in this document is accurate as of its publication date.

Hewlett-Packard makes no warranty of any kind with regards to this document, including, but not limited to, the implied warranties of merchantability and fitness for any particular purpose.

Hewlett-Packard shall not be held liable for errors contained herein and/or direct indirect, special, incidental or consequential damages in connection with furnishing, performance, and/or use of this material.

All information contained within this document, which relates to Hewlett-Packard and its partners (including but not limited to its functions, policies, procedures, decisions, officers, employees, agents, clients and all financial matters) shall be kept absolutely confidential.

No part of this document may be distributed to third parties unless authorised by Hewlett-Packard Australia.

© Copyright Hewlett-Packard Australia, 2011
Table of Contents

Proprietary Notice ... 2
1. Introduction ... 5
 1.1. Purpose and Scope... 5
 1.2. Sample Configurations ... 5
 1.3. Related Documents and References ... 5
 1.4. Public References ... 6
 1.4.1. General Information ... 6
 1.4.2. HP Networking ... 6
 1.5. Definitions and Abbreviations .. 6
 1.6. Conventions used in this Document .. 6

2. Preparation .. 7
 2.1. Equipment Used .. 7
 2.1.1. A5820 – Number1 .. 7
 2.1.2. A5820 – Number2 .. 7
 2.1.3. A5800 – Number3 ... 8
 2.2. Existing Configuration ... 8

3. IRF Configuration .. 9
 3.1. Switch 1 Config .. 9
 3.1.1. Priority and Port Shutdown ... 9
 3.2. Switch 2 Config .. 10
 3.2.1. Member ID .. 10
 3.2.2. Priority and Port Shutdown ... 10
 3.3. IRF Operational .. 11
 3.3.1. Cable Connection ... 11
 3.3.2. IRF Virtual Switch Creation Successful ... 11

4. Other Configuration Options .. 12
 4.1. Adding an Additional Switch To the IRF Virtual Switch 12
 4.1.1. Configuration ... 12
 4.1.2. Cable Connection ... 12
 4.1.3. Successful Addition of Third Switch ... 13
 4.2. Extend the Chain into a Loop ... 14
 4.2.1. Configuration ... 14
 4.2.2. Loop Successful ... 14
 4.3. Increasing the IRF Link Bandwidth Capacity ... 15
 4.3.1. Preparation ... 15
 4.3.2. IRF Port Configuration ... 15
 4.3.3. Enable Interfaces and Activate .. 16
 4.3.4. IRF Bandwidth Increase Successful ... 17
 4.4. Remove a Switch from IRF .. 18
 4.4.1. Current Config .. 18
 4.4.2. Process .. 18
 4.4.3. Switch Removal Successful ... 19
4.5. Replace a Failed Switch ... 20
4.5.1. Current Config ... 20
4.5.2. Switch 2 Fails ... 20
4.5.3. Replace Failed Switch .. 20
4.5.4. Successful Replacement .. 21

5. Multi-Active Detection (MAD) ... 22
5.1. MAD Overview .. 22
5.2. Config before MAD .. 22
5.3. MAD Configuration ... 23
5.4. Testing .. 24
5.5. Exclude interfaces ... 24
5.5.1. Configuration .. 24
5.5.2. Testing .. 25

6. Appendix A: Error Conditions and Notes ... 27
6.1. Config not Saved ... 27
6.2. IRF Ports ... 27
6.2.1. Physical 10Gb Interfaces .. 27
6.2.2. 10Gb Transceivers ... 27
6.2.3. IRF Port and Interface Numbers ... 27
6.3. IRF Port Shutdown ... 28
6.4. Reboot/Restart .. 28
6.4.1. Requirement .. 28
6.4.2. Whole IRF Virtual Switch .. 28
6.4.3. Switchto ... 28
6.5. Removing Old Configurations .. 29
6.5.1. Shutdown IRF port interfaces ... 29
6.5.2. Remove the IRF Ports ... 29
6.5.3. Reset Config .. 30
6.6. Duplicate IRF Member IDs ... 31
6.6.1. Existing Config ... 31
6.6.2. Configuration ... 31
6.6.3. Errors .. 31

7. Appendix B: Configs .. 33
7.1. Default Switch Configuration – A5800-48G ... 33

8. Appendix C: Sample Demo Script ... 37

9. Appendix D: IRF Config Steps for Most Devices ... 38
9.1. IRF on A12500, A9500 Switches ... 38
9.2. IRF on A7500 Switches ... 40
9.3. IRF on A5820, A5800 Switches (and new A5500Ei) 42
9.4. IRF on A5500Ei, A5120Ei Switches – Old Method 45
1. Introduction

1.1. Purpose and Scope

HP Networking is the networking division of Hewlett Packard. The extensive product line-up includes products that range from high-end core network functionality down to small SMB unmanaged switches.

This document will focus on the A5820 and A5800 Comware switches that are ideally suited for linking together with Intelligent Resilient Framework (IRF) to form a single logical entity – a virtual switch. The information provided in this document is designed to assist a suitably skilled practitioner to understand and then design or implement a network environment based on the HP Networking Comware switches with IRF.

The majority of examples provided in this document can be applied to other Comware switches that also support IRF, such as the A7500 and A12500. Note that the current maximum number of IRF members on the chassis-based switches is typically 4.

1.2. Sample Configurations

HP Networking has developed one or more sample configurations to show possible configuration scenarios of IRF on the Comware switches. They are samples only, and do not take into account specific requirements or restrictions that may be present in a customer production environment.

1.3. Related Documents and References

<table>
<thead>
<tr>
<th>Version/Date</th>
<th>Author</th>
<th>Document Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul-2010</td>
<td>Richard Litchfield</td>
<td>RWL Tech Note – HPN A Series C-Class Connectivity</td>
</tr>
<tr>
<td>17-Nov-2010</td>
<td>Richard Litchfield</td>
<td>RWL Tech Note – A5500 IRF</td>
</tr>
<tr>
<td>2011</td>
<td>Jeff Dziedzic</td>
<td>IRF Config process for most devices</td>
</tr>
</tbody>
</table>
1.4. Public References

1.4.1. General Information
http://www.hp.com/go/convergedinfrastructure
HP Converged Infrastructure

http://forums.itrc.hp.com/
Support forums for all HP products

http://www.visiocafe.com/hp.htm
Hewlett Packard Visio collection: HP's official Visio collection includes front and rear physical shapes as well as "logical" shapes and 3D Isometric Collection which are used for detailed design drawings.

1.4.2. HP Networking
http://www.hp.com/go/networking
The HP Networking starting point!

HP A5820 Switch Series Support (firmware, support, etc)

http://h20000.www2.hp.com/bizsupport/TechSupport/DocumentIndex.jsp?contentType=SupportManual&lang= en&cc=us&docIndexId=64179&taskId=101&prodTypeld=12883&prodSeriesId=4218345
Manuals for the A5820 Series switches

1.5. Definitions and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>Hewlett Packard</td>
</tr>
<tr>
<td>HPN</td>
<td>HP Networking</td>
</tr>
<tr>
<td>CLI</td>
<td>Command Line Interface</td>
</tr>
<tr>
<td>IRF</td>
<td>Intelligent Resilient Framework</td>
</tr>
<tr>
<td>HPGM</td>
<td>HP Global Method (Project Management)</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>STP</td>
<td>Spanning Tree Protocol</td>
</tr>
<tr>
<td>VLAN</td>
<td>Virtual Local Area Network</td>
</tr>
</tbody>
</table>

1.6. Conventions used in this Document

- CLI switch output.
- Specific CLI commands.
- Key items to focus on.
2. Preparation

2.1. Equipment Used

2.1.1. A5820 – Number1

The first switch is an A5820 with 14x 10Gb SFP+ ports and 4x 1Gb RJ45 ports, labelled “Number1”.

```
[Number1]\display_version
H3C Comware Platform Software
Comware Software, Version 5.20, Release 1206
Copyright (c) 2004-2010 Hangzhou H3C Tech. Co., Ltd. All rights reserved.
H3C S5820X-28C uptime is 0 week, 0 day, 1 hour, 2 minutes
H3C S5820X-28C with 2 Processor
512M bytes SDRAM
4M bytes Nor Flash Memory
512M bytes Nand Flash Memory
Config Register points to Nand Flash
Hardware Version is Ver.B
CPLDA Version is 003, CPLDB Version is 003
BootRom Version is 205
[SubSlot 0] 14SFP Plus+4GE Hardware Version is Ver.B
[SubSlot 1] No Module
[SubSlot 2] No Module
[SubSlot 3] No Module
```

```
[Number1]\display stp
Protocol Status:disabled
Protocol Std.:IEEE 802.1s
Version:3
CIST Bridge-Prio.:32768
MAC address:0023-89ed-daca
Max age(s):20
Forward delay(s):15
Hello time(s):2
Max hops:20
```

2.1.2. A5820 – Number2

The second switch is an A5800 with 4x 10Gb SFP+ ports and 48x 1Gb RJ45 ports, labelled “Number2”.

```
[Number2]\display stp
Protocol Status:disabled
Protocol Std.:IEEE 802.1s
Version:3
CIST Bridge-Prio.:32768
MAC address:0013-89ed-daca
Max age(s):20
Forward delay(s):15
Hello time(s):2
Max hops:20
```
2.1.3. A5800 – Number3
The third switch is an A5800 with 4x 10Gb SFP+ ports and 24x 1Gb RJ45 ports, labelled “Number3”.

```
[Number3] display version
H3C Comware Platform Software
Comware Software, Version 5.20, Release 1206
Copyright (c) 2004-2010 Hangzhou H3C Tech. Co., Ltd. All rights reserved.
H3C S5800-32C uptime is 0 week, 0 day, 0 hour, 19 minutes
H3C S5800-32C with 2 Processor
512M bytes SDRAM
4M bytes Nor Flash Memory
512M bytes Nand Flash Memory
Config Register points to Nand Flash
Hardware Version is Ver.B
CPLD Version is 003
BootRom Version is 205
[SubSlot 0] 24GE+4SFP Plus Hardware Version is Ver.B
[SubSlot 1] No Module
```

```
[Number3] display stp
Protocol Status :disabled
Protocol Std. :IEEE 802.1s
Version :3
CIST Bridge-Prio. :32768
MAC address :3ce5-a610-7388
Max age(s) :20
Forward delay(s) :15
Hello time(s) :2
Max hops :20
```

2.2. Existing Configuration
IRF is not configured on any of the switches. Switches would show something similar to this output:

```
[Number3] display irf configuration
MemberID NewID     IRF-Port1       IRF-Port2
 1     1      disable       disable
```

Any cables that will link the switches should be left disconnected until specified.
3. IRF Configuration

3.1. Switch 1 Config

3.1.1. Priority and Port Shutdown
The first switch will be given the highest priority (32) so that it will be the master switch. The higher the priority number, the more likely the switch is to become the master of the IRF group.

```
[Number1]irf member 1 priority 32
```

All ports that will be IRF ports need to be shutdown.

```
[Number1]int Ten-GigabitEthernet1/0/14
[Number1-Ten-GigabitEthernet1/0/14]shutdown
```

Save the configuration and reboot!

3.1.2. IRF-ports
IRF-ports are used to define the IRF links between the switches. IRF-port 1 can only ever connect to IRF-port 2.

Configure IRF port 1:

```
[Number1]irf-port 1/1
[Number1-irf-port1/1]port group interface Ten-GigabitEthernet 1/0/14 mode enhanced
```

Enable the interface:

```
[Number1]int Ten-GigabitEthernet 1/0/14
[Number1-Ten-GigabitEthernet1/0/14]undo shutdown
```

Activate IRF:

```
[Number1]irf-port-configuration active
[Number1]display irf configuration
```

<table>
<thead>
<tr>
<th>MemberID</th>
<th>NewID</th>
<th>IRF-Port1</th>
<th>IRF-Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Ten-GigabitEthernet1/0/14</td>
<td>disable</td>
</tr>
</tbody>
</table>

Save the configuration!
3.2. Switch 2 Config

3.2.1. Member ID
Switch 2 needs to be renumbered from the default member ID of 1. Do the renumbering first, reboot, and then shutdown the ports.

```
[Number2] display irf configuration
MemberID NewID   IRF-Port1             IRF-Port2
  1       1        disable                       disable

[Number2] irf member 1 renumber 2
Warning: Renumbering the switch number may result in configuration change or loss.
Continue?[Y/N] y
[Number2] display irf configuration
MemberID NewID   IRF-Port1             IRF-Port2
  1       2        disable                       disable
```

Save the configuration and reboot!

3.2.2. Priority and Port Shutdown
The second switch will be given a lower priority than the master (eg 20) so that it will not be the master switch when all switches are online.

```
[Number2] irf member 2 priority 20
```

All ports that will be IRF ports need to be shutdown.

```
[Number2] int Ten-GigabitEthernet2/0/52
[Number2-Ten-GigabitEthernet2/0/52] shutdown
```

Save the configuration and reboot!

3.2.3. IRF-ports
Configure IRF port 2:

```
[Number2] irf-port 2/2
[Number2-irf-port2/2] port group interface Ten-GigabitEthernet 2/0/52 mode enhanced
```

Enable the interface:

```
[Number2] int Ten-GigabitEthernet 2/0/52
[Number2-Ten-GigabitEthernet2/0/52] undo shutdown
```

Activate IRF:

```
[Number2] irf-port-configuration active
[Number2] display irf configuration
MemberID NewID   IRF-Port1             IRF-Port2
  2       2        disable       Ten-GigabitEthernet2/0/52
```

Save the configuration!
3.3. IRF Operational

3.3.1. Cable Connection

Now connect the two switches. In this example, a 10Gb SFP+ to SFP+ direct attach cable (DAC) is used between Ten-GigabitEthernet1/0/14 (switch 1) and Ten-GigabitEthernet2/0/52 (switch 2).

This should cause switch 2 to restart. The master switch (switch 1) will upload the configuration into switch 2 as it boots up, and a single IRF virtual switch will be created.

If switch 2 does not restart automatically, it is likely that one of the IRF ports is still shutdown, or there is a misconfiguration (see Section 6). Try a manual reboot.

3.3.2. IRF Virtual Switch Creation Successful

Now that the two switches are linked together with IRF as a virtual switch, a single entity based on the config in switch 1 applies to both switches. To avoid confusion, it is suggested that the IRF virtual switch be renamed.

```
[Number1]sysname A58-IRF
```

The IRF details can be viewed with the following commands.

```
        [A58-IRF]display irf topology
        Topology Info
        +---------------------------+---------------------------+
        | IRF-Port1 | IRF-Port2 |
        +-----------+-----------+
        | Switch    | Link      | neighbor   | Link      | neighbor   | Belong To |
        +-----------+-----------+------------+-----------+------------+-----------+
        | 2         | DIS       | --         | UP        | 1          | 0023-89ed-dacb |
        | 1         | UP        | 2          | DIS       | --         | 0023-89ed-dacb |
        +-----------+-----------+------------+-----------+------------+-----------+

        [A58-IRF]display irf configuration
        MemberID NewID    IRF-Port1                     IRF-Port2
        +-----------+-----------+---------------------------+-----------+
        | 1         | 1          | Ten-GigabitEthernet1/0/14 | disable   |
        | 2         | 2          | disable                  | Ten-GigabitEthernet2/0/52 |
        +-----------+-----------+---------------------------+-----------+
4. Other Configuration Options

4.1. Adding an Additional Switch To the IRF Virtual Switch
In this example, a third switch will be added to an existing IRF virtual switch that has two members. The process is very similar to that described in Section 3.2 for the second switch.

4.1.1. Configuration

- Member ID
- Priority
- Save, reboot
- 10Gb ports shutdown
- IRF-port
- 10Gb ports up
- Save
- Activate

4.1.2. Cable Connection
Now connect switch 2 to switch 3. In this example, a 10Gb SFP+ to SFP+ direct attach cable (DAC) is used between Ten-GigabitEthernet2/0/49 (switch 2) and Ten-GigabitEthernet3/0/28 (switch 3).

This should cause switch 3 to restart. The master switch (switch 1) will upload the configuration into switch 3 as it boots up, and the single IRF virtual switch will be expanded to include 3 physical switches.

If switch 3 does not restart automatically, it is likely that one of the IRF ports is still shutdown, or there is a misconfiguration (see Section 6). Try a manual reboot.
4.1.3. Successful Addition of Third Switch

Now that the three switches are linked together with IRF as a virtual switch, a single entity based on the configuration in switch 1 applies to all switches.

The IRF details can be viewed with the following commands.

```
[IRF-58]dis irf
Switch Role Priority CPU-Mac Description
*+1 Master 32 0023-89ed-dacb -----
 2 Slave 1 0023-8939-ab5b -----
 3 Slave 15 3ce5-a610-7389 -----
```

* indicates the device is the master.
+ indicates the device through which the user logs in.

The Bridge MAC of the IRF is: 0023-89ed-daca
Auto upgrade                  : yes
Mac persistent                : 6 min
Domain ID                     : 0

```
[IRF-58]dis irf topology
Topology Info
```

```
IRF-Port1 IRF-Port2
Switch Link neighbor Link neighbor Belong To
3 DIS -- UP 2 0023-89ed-dacb
2 UP 3 UP 1 0023-89ed-dacb
1 UP 2 DIS -- 0023-89ed-dacb
```

```
[IRF-58]dis irf configuration
MemberID NewID IRF-Port1 IRF-Port2
1 1 Ten-GigabitEthernet1/0/14 disable
2 2 Ten-GigabitEthernet2/0/49 Ten-GigabitEthernet2/0/52
3 3 disable Ten-GigabitEthernet3/0/28
```
4.2. Extend the Chain into a Loop
Following on from Section 4.1, in this Section the chain will be converted into a loop.

4.2.1. Configuration
This completes the loop from switch 3 back to switch 1. These commands can now be done from any connection to the IRF switch.

```
[IRF-58] int Ten-GigabitEthernet 3/0/25
[IRF-58-Ten-GigabitEthernet1/0/11] shut
[IRF-58-Ten-GigabitEthernet1/0/11] quit

[IRF-58-irf-port 3/1]
Info: You are recommended to save the configuration after completing your IRF configuration; otherwise, it may be lost after system reboot.
[IRF-58-irf-port3/1] irf-port 1/2
[IRF-58-irf-port1/2] port group interface Ten-GigabitEthernet 1/0/11 mode enhanced
Info: You are recommended to save the configuration after completing your IRF configuration; otherwise, it may be lost after system reboot.
[IRF-58-irf-port1/2] quit

[IRF-58] int Ten-GigabitEthernet 3/0/25
[IRF-58-Ten-GigabitEthernet1/0/11] un shut
[IRF-58-Ten-GigabitEthernet1/0/11] quit
[IRF-58] save
[IRF-58] irf-port-configuration active
```

Don't forget the "active" command! (Required after changes are made to the IRF configuration.

4.2.2. Loop Successful
Connect the cable between switch 3 back to switch 1.

Note that nothing needs to be rebooted! (The switches are already part of the IRF virtual switch, and share the configuration.)

```
[IRF-58] display irf topology
```

<table>
<thead>
<tr>
<th>Switch</th>
<th>IRF-Port1</th>
<th>IRF-Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Link</td>
<td>neighbor</td>
</tr>
<tr>
<td>1</td>
<td>UP</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>UP</td>
<td>1</td>
</tr>
</tbody>
</table>
4.3. Increasing the IRF Link Bandwidth Capacity

In this Section, the 10Gb IRF links created in previous Sections will be doubled in capacity to 20Gb.

4.3.1. Preparation

From the output below, you can see that there are 3 switches in the IRF config, each with a single 10Gb port that links to the next switch in the loop.

```
[IRF-58] display irf configuration

MemberID NewID IRF-Port1 IRF-Port2
1 1 Ten-GigabitEthernet1/0/14 Ten-GigabitEthernet1/0/11
2 2 Ten-GigabitEthernet2/0/49 Ten-GigabitEthernet2/0/52
3 3 Ten-GigabitEthernet3/0/25 Ten-GigabitEthernet3/0/28
```

Make sure all the new ports to be added are shutdown.

```
[IRF-58] int Ten-GigabitEthernet 1/0/12
[IRF-58-Ten-GigabitEthernet1/0/12] shutdown
[IRF-58-Ten-GigabitEthernet1/0/12] int Ten-GigabitEthernet 1/0/13
[IRF-58-Ten-GigabitEthernet1/0/13] shutdown
[IRF-58-Ten-GigabitEthernet1/0/13] int Ten-GigabitEthernet 2/0/50
[IRF-58-Ten-GigabitEthernet2/0/50] shutdown
[IRF-58-Ten-GigabitEthernet2/0/50] int Ten-GigabitEthernet 2/0/51
[IRF-58-Ten-GigabitEthernet2/0/51] shutdown
[IRF-58-Ten-GigabitEthernet3/0/26] shutdown
```

4.3.2. IRF Port Configuration

Each IRF port already configured needs an additional 10Gb interface assigned to it.

```
[IRF-58]irf-port 1/1
[IRF-58-irf-port1/1] port group interface Ten-GigabitEthernet 1/0/13 mode enhanced
[IRF-58-irf-port1/1] irf-port 1/2
[IRF-58-irf-port1/2] port group interface Ten-GigabitEthernet 1/0/12 mode enhanced
[IRF-58-irf-port1/2] irf-port 2/2
[IRF-58-irf-port2/2] port group interface Ten-GigabitEthernet 2/0/51 mode enhanced
[IRF-58-irf-port2/2] irf-port 2/1
[IRF-58-irf-port2/1] port group interface Ten-GigabitEthernet 2/0/50 mode enhanced
[IRF-58-irf-port3/2] irf-port 3/1
[IRF-58-irf-port3/1] port group interface Ten-GigabitEthernet 3/0/26 mode enhanced
```
The configuration should now look like this:

```
[IRF-58-irf-port1/1]display this
#
irf-port 1/1
 port group interface Ten-GigabitEthernet1/0/13 mode enhanced
 port group interface Ten-GigabitEthernet1/0/14 mode enhanced
#
return

[IRF-58-irf-port1/2]dis this
#
irf-port 1/2
 port group interface Ten-GigabitEthernet1/0/11 mode enhanced
 port group interface Ten-GigabitEthernet1/0/12 mode enhanced
#
return
[IRF-58-irf-port1/2]qu
[IRF-58]dis irf configuration
```

<table>
<thead>
<tr>
<th>MemberID</th>
<th>NewID</th>
<th>IRF-Port1</th>
<th>IRF-Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Ten-GigabitEthernet1/0/13</td>
<td>Ten-GigabitEthernet1/0/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ten-GigabitEthernet1/0/14</td>
<td>Ten-GigabitEthernet1/0/12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Ten-GigabitEthernet2/0/49</td>
<td>Ten-GigabitEthernet2/0/51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ten-GigabitEthernet2/0/50</td>
<td>Ten-GigabitEthernet2/0/52</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Ten-GigabitEthernet3/0/25</td>
<td>Ten-GigabitEthernet3/0/27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ten-GigabitEthernet3/0/26</td>
<td>Ten-GigabitEthernet3/0/28</td>
</tr>
</tbody>
</table>

**4.3.3. Enable Interfaces and Activate**

Enable the interfaces and save config.

```
[IRF-58]interface Ten-GigabitEthernet 1/0/12
[IRF-58-Ten-GigabitEthernet1/0/12]undo shutdown
[IRF-58-Ten-GigabitEthernet1/0/12]interface Ten-GigabitEthernet 1/0/13
[IRF-58-Ten-GigabitEthernet1/0/13]undo shutdown
[IRF-58-Ten-GigabitEthernet2/0/50]undo shutdown
[IRF-58-Ten-GigabitEthernet2/0/50]interface Ten-GigabitEthernet 2/0/51
[IRF-58-Ten-GigabitEthernet2/0/51]undo shutdown
[IRF-58-Ten-GigabitEthernet3/0/26]undo shutdown
[IRF-58]save
```

Activate the IRF config, and connect cables.
4.3.4. IRF Bandwidth Increase Successful
Each IRF link is now 20Gb, all links are active, there are no passive/standby links.

```
[IRF-58]dis int br
The brief information of interface(s) under bridge mode:
Link: ADM - administratively down; Stby - standby
Speed or Duplex: (a)/A - auto; H - half; F - full
Type: A - access; T - trunk; H - hybrid
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link Speed</th>
<th>Duplex</th>
<th>Type</th>
<th>PVID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGE1/0/11</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE1/0/12</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE1/0/13</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE1/0/14</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE2/0/49</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE2/0/50</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE2/0/51</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE2/0/52</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE3/0/25</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE3/0/26</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE3/0/27</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>XGE3/0/28</td>
<td>UP</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

```
[IRF-58]dis irf topology
```

```
Topological Info
```

```
<table>
<thead>
<tr>
<th>Switch</th>
<th>IRF-Port1</th>
<th>IRF-Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UP 2</td>
<td>UP 3</td>
</tr>
<tr>
<td>2</td>
<td>UP 3</td>
<td>UP 1</td>
</tr>
<tr>
<td>3</td>
<td>UP 1</td>
<td>UP 2</td>
</tr>
</tbody>
</table>

```

0023-89ed-dacb
0023-89ed-dacb
0023-89ed-dacb
4.4. Remove a Switch from IRF

In this example, there are three switches in the IRF virtual switch. Switch 3 will be removed.

4.4.1. Current Config

Three switches are linked in an IRF virtual switch. Each IRF port contain 2 x 10Gb ports to provide a 20Gb channel.

```
[IRF-58]dis irf topology
```

<table>
<thead>
<tr>
<th>Switch</th>
<th>Link</th>
<th>neighbor</th>
<th>Link</th>
<th>neighbor</th>
<th>Belong To</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UP</td>
<td>2</td>
<td>UP</td>
<td>3</td>
<td>0023-89ed-dacb</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>3</td>
<td>UP</td>
<td>1</td>
<td>0023-89ed-dacb</td>
</tr>
<tr>
<td>3</td>
<td>UP</td>
<td>1</td>
<td>UP</td>
<td>2</td>
<td>0023-89ed-dacb</td>
</tr>
</tbody>
</table>

```
[IRF-58]dis irf configuration
```

<table>
<thead>
<tr>
<th>MemberID</th>
<th>NewID</th>
<th>IRF-Port1</th>
<th>IRF-Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Ten-GigabitEthernet1/0/13</td>
<td>Ten-GigabitEthernet1/0/11</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Ten-GigabitEthernet1/0/14</td>
<td>Ten-GigabitEthernet1/0/12</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Ten-GigabitEthernet2/0/50</td>
<td>Ten-GigabitEthernet2/0/52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ten-GigabitEthernet3/0/25</td>
<td>Ten-GigabitEthernet3/0/27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ten-GigabitEthernet3/0/26</td>
<td>Ten-GigabitEthernet3/0/28</td>
</tr>
</tbody>
</table>

4.4.2. Process

Switch 3 is linked to switch 2 and switch 1 as part of the loop. Breaking the link to switch 1 (the master) has to be done from switch 1. The error condition that appears if this is not done is described in Section 6.3.

```
[IRF-58-Ten-GigabitEthernet3/0/26]int Ten-GigabitEthernet 1/0/11
[IRF-58-Ten-GigabitEthernet1/0/11]shutdown
[IRF-58-Ten-GigabitEthernet1/0/12]shutdown
```

The IRF link between switch 1 and 3 is now shown as down (and the cables can be removed).

```
[IRF-58]dis irf topology
```

<table>
<thead>
<tr>
<th>Switch</th>
<th>Link</th>
<th>neighbor</th>
<th>Link</th>
<th>neighbor</th>
<th>Belong To</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DOWN</td>
<td>--</td>
<td>UP</td>
<td>2</td>
<td>0023-89ed-dacb</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>3</td>
<td>UP</td>
<td>1</td>
<td>0023-89ed-dacb</td>
</tr>
<tr>
<td>1</td>
<td>UP</td>
<td>2</td>
<td>DOWN</td>
<td>--</td>
<td>0023-89ed-dacb</td>
</tr>
</tbody>
</table>

Now shutdown the links from switch 2.

```
[IRF-58-Ten-GigabitEthernet2/0/50]shutdown
[IRF-58-Ten-GigabitEthernet2/0/50]int Ten-GigabitEthernet 2/0/49
[IRF-58-Ten-GigabitEthernet2/0/49]shutdown
[IRF-58-Ten-GigabitEthernet2/0/49]
```

---

HP Global Method

RWL TechNote - IRF Configuration v1.02.doc

Last changed: 22 August 2013 at 17:30
4.4.3. Switch Removal Successful

Now that switch 3 is removed, neither the switch, nor any of its ports, show up on the IRF config.

```
[IRF-58]dis irf
Switch Role Priority CPU-Mac Description
*+1 Master 32 0023-89ed-dacb -----
 2 Slave 1 0023-8939-ab5b -----

* indicates the device is the master.
+ indicates the device through which the user logs in.

The Bridge MAC of the IRF is: 0023-89ed-daca
Auto upgrade : yes
Mac persistent : 6 min
Domain ID : 0
[IRF-58]dis irf topology
Topo Info
-- -----------------------
IRF-Port1 IRF-Port2
Switch Link neighbor Link neighbor Belong To
2 DOWN -- UP 1 0023-89ed-dacb
1 UP 2 DOWN -- 0023-89ed-dacb
```

```
[IRF-58]dis irf configuration
MemberID NewID IRF-Port1 IRF-Port2
 1 1 Ten-GigabitEthernet1/0/13 Ten-GigabitEthernet1/0/11
 Ten-GigabitEthernet1/0/14 Ten-GigabitEthernet1/0/12
 2 2 Ten-GigabitEthernet2/0/49 Ten-GigabitEthernet2/0/51
 Ten-GigabitEthernet2/0/50 Ten-GigabitEthernet2/0/52
```
4.5. Replace a Failed Switch

4.5.1. Current Config

Two switches are linked in an IRF virtual switch. Each IRF port contain 2 x 10Gb ports to provide a 20Gb channel.

```
[IRF-58] display irf
Switch Role Priority CPU-Mac Description
*+1 Master 32 0023-89ed-dacb -----
 2 Slave 25 0023-8939-ab5b -----
```

* indicates the device is the master.
+ indicates the device through which the user logs in.

The Bridge MAC of the IRF is: 0023-89ed-daca
Auto upgrade : yes
Mac persistent : 6 min
Domain ID : 0

```
[IRF-58] display irf topology
```

To simulate a failure, switch 2 is powered off; it now needs to be replaced.

```
[IRF-58] display interface brief
```

System is busy with VIU configuration recovery, please wait a moment...

The interface list will no longer have any ports that were in switch 2 listed (ie no 2/0/n entries). The IRF commands only show a single device.

4.5.2. Switch 2 Fails

To simulate a failure, switch 2 is powered off; it now needs to be replaced.

```
[IRF-58] display interface brief
```

The interface list will no longer have any ports that were in switch 2 listed (ie no 2/0/n entries). The IRF commands only show a single device.

4.5.3. Replace Failed Switch

Follow the process as specified in Section 3.2 to configure the replacement switch for IRF. The replacement switch should be the same model as the failed switch, however in this example, a 48 port switch is being replaced with a 24 port switch.

- **Member ID**
- **Priority**
- **Save, reboot**
- **10Gb ports shutdown**
- **IRF-port**
- **10Gb ports up**
- **Save**
- **Activate**
- **Connect cables (replacement switch will reboot).**
Note the different IRF port configuration because the replacement is a 24 port instead of 48 port switch.

```
[H3C-irf-port2/2]display this
#
 irf-port 2/2
 port group interface Ten-GigabitEthernet2/0/27 mode enhanced
 port group interface Ten-GigabitEthernet2/0/28 mode enhanced
#
Return
```

4.5.4. Successful Replacement

Everything is now back to normal.

```
[IRF-58]display irf
Switch Role Priority CPU-Mac Description
*+1 Master 32 0023-89ed-dacb -----
 2 Slave 25 3ce5-a610-7389 -----

* indicates the device is the master.
+ indicates the device through which the user logs in.

The Bridge MAC of the IRF is: 0023-89ed-daca
Auto upgrade : yes
Mac persistent : 6 min
Domain ID : 0

[IRF-58]display irf configuration
MemberID NewID IRF-Port1 IRF-Port2
 1 1 Ten-GigabitEthernet1/0/13 disable
 Ten-GigabitEthernet1/0/14
 2 2 disable Ten-GigabitEthernet2/0/27
 Ten-GigabitEthernet2/0/28

[IRF-58]display irf topology
Topology Info

<table>
<thead>
<tr>
<th>IRF-Port1</th>
<th>IRF-Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch</td>
<td>Link</td>
</tr>
<tr>
<td>2</td>
<td>DIS</td>
</tr>
<tr>
<td>1</td>
<td>UP</td>
</tr>
</tbody>
</table>
```
5. Multi-Active Detection (MAD)

5.1. MAD Overview

Multi-Active Detection (MAD) is an IRF specific function that ensures a split-brain condition does not occur. For example, if a two-member IRF virtual switch lost all connectivity between each other (if the IRF cables were disconnected for instance):

- then the master would continue to be the master
- the slave would elect itself master (because there was no communication from the master)
- that would result in a split-brain condition, with all the attendant issues that entails.

MAD provides for an additional communication mechanism (effectively a heart-beat) that prevents the split-brain condition from occurring by shutting down the ports on the disconnected slave device(s).

5.2. Config before MAD

The configuration examples used in this Section came from a slightly configuration than the examples from most of the rest of this document. Two A5820 switches (A5820-14XG and A5820-24XG switches were used.)

```text
[IRF-58]dis mad verbose
Current MAD status: Detect
Excluded ports(configurable):
- Ten-GigabitEthernet1/0/13
- Ten-GigabitEthernet1/0/14
- Ten-GigabitEthernet2/0/13
- Ten-GigabitEthernet2/0/14
MAD ARP disabled.
MAD LACP disabled.
MAD BFD disabled.

[IRF-58]dis irf configuration
MemberID NewID IRF-Port1 IRF-Port2
1 1 Ten-GigabitEthernet1/0/13 disable
 Ten-GigabitEthernet1/0/14
2 2 disable Ten-GigabitEthernet2/0/13
 Ten-GigabitEthernet2/0/14

[IRF-58]dis irf topology
Topoology Info
Switch Link neighbor Link neighbor Belong To
2 DIS -- UP 1 0023-89ed-dacb
1 UP 2 DIS -- 0023-89ed-dacb
```
5.3. MAD Configuration

There are three different ways of enabling MAD – LACP, ARP, BFD. In this example BFD is used. Extracts from the running configuration are used.

Create a dedicated VLAN:

```plaintext
glan 66
 description Multi-Active Detection

Enable MAD BFD and assign IP addresses to each member switch.

```plaintext
interface Vlan-interface66
   mad bfd enable
   mad ip address 192.168.66.1 255.255.255.0 member 1
   mad ip address 192.168.66.2 255.255.255.0 member 2
```

Assign the VLAN (untagged) to the relevant ports.

```plaintext
interface GigabitEthernet1/0/18
   port link-mode bridge
   description Switch 1 MAD
   port access vlan 66
interface GigabitEthernet2/0/28
   port link-mode bridge
   description Switch 2 MAD
   port access vlan 66
```

The MAD link in the photo below is the aqua coloured cable directly linking the two switches.

![MAD link](image)

This images shows how MAD is displayed within IMC – note the loop.

![MAD display](image)
5.4. Testing

After MAD is configured, the two DACs that were linking the two switches in IRF were disconnected.
- All non-IRF ports on the slave switch are deactivated.
- After plugging the IRF cables back in, the slave switch restarts, and comes back online with the config downloaded from the IRF master.
- All links come back on-line as normal.

System is busy with warm backup, please wait ...
System is busy with warm backup, please wait ...
#May 2 22:01:29:107 2000 IRF-58 IFNET/4/INTERFACE UPDOWN:
 Trap 1.3.6.1.6.3.1.1.5.4<linkUp>: Interface 20185095 is Up, ifAdminStatus is 1, ifOperStatus is 1
#May 2 22:01:29:308 2000 IRF-58 IFNET/4/INTERFACE UPDOWN:
 Trap 1.3.6.1.6.3.1.1.5.4<linkUp>: Interface 20185094 is Up, ifAdminStatus is 1, ifOperStatus is 1
%May 2 22:01:29:508 2000 IRF-58 IFNET/3/LINK_UPDOWN: Ten-GigabitEthernet2/0/8 link status is UP.
%May 2 22:01:29:629 2000 IRF-58 IFNET/3/LINK_UPDOWN: Ten-GigabitEthernet2/0/7 link status is UP.
%May 2 22:01:30:047 2000 IRF-58 LLDP/6/LLDP_CREATE_NEIGHBOUR: -Slot=2; New neighbor created on Port Ten-GigabitEthernet2/0/7 (IfIndex 20185094), Chassis ID is 78ac-c072-f391, Port ID is X4.
#May 2 22:01:30:472 2000 IRF-58 LAGG/1/AggPortRecoverActive:
 Trap 1.3.6.1.4.1.25506.8.25.2.4<hh3cAggPortActiveNotification>: Aggregation Group 8: port member 20185095 becomes ACTIVE!

5.5. Exclude interfaces

One of the options for MAD is which interfaces on the IRF slave switches to shut down. By default, all ports except IRF are shut down.

5.5.1. Configuration

An extra port was added to the excluded list so it would not be shut down if the IRF slave switch interfaces were disabled by MAD. However, more than one port may need to be excluded if any useful traffic is to flow...

```plaintext
[IRF-58] mad exclude interface g2/0/26
[IRF-58] dis mad verbose
Current MAD status: Detect
Excluded ports(configurable):
  GigabitEthernet2/0/26
Excluded ports(can not be configured):
  Ten-GigabitEthernet1/0/13
  Ten-GigabitEthernet1/0/14
  Ten-GigabitEthernet2/0/13
  Ten-GigabitEthernet2/0/14
MAD ARP disabled.
MAD LACP disabled.
MAD BFD disabled interface:
  Vlan-interface66
    mad ip address 192.168.66.1 255.255.255.0 member 1
    mad ip address 192.168.66.2 255.255.255.0 member 2
```
5.5.2. Testing

The two DACs that were linking the two switches in IRF were disconnected.

- All non-IRF ports on the slave switch are deactivated, except g2/0/26.
- After plugging the IRF cables back in, the slave switch restarts, and comes back online with the config downloaded from the IRF master.
- All links come back on-line as normal.

The left photo shows the links up on a normally running IRF virtual switch; the right hand photo shows the ports down except for the excluded port g2/0/26 after MAD shut down the interfaces.

[IRF-58]
#May 2 22:05:52:024 2000 IRF-58 IFNET/4/INTERFACE UPDOWN:
 Trap 1.3.6.1.6.3.1.1.5.3<linkDown>: Interface 11796492 is Down, ifAdminStatus is 1, ifOperStatus is 2
#May 2 22:05:52:234 2000 IRF-58 IFNET/4/INTERFACE UPDOWN:
 Trap 1.3.6.1.6.3.1.1.5.3<linkDown>: Interface 20185100 is Down, ifAdminStatus is 1, ifOperStatus is 2
%May 2 22:05:52:435 2000 IRF-58 IFNET/3/LINK_UPDOWN: Ten-GigabitEthernet2/0/13 link status is DOWN.
%May 2 22:05:52:555 2000 IRF-58 IFNET/3/LINK_UPDOWN: Ten-GigabitEthernet1/0/13 link status is DOWN.
%May 2 22:05:52:676 2000 IRF-58 OPTMOD/4/MODULE_OUT:
 Ten-GigabitEthernet1/0/13: The transceiver is absent.

%May 2 22:05:53:839 2000 IRF-58 STM/4/LINK_STATUS_CHANGE:
 Trap 1.3.6.1.4.1.25506.2.91.6.0.1<hh3cBoardRemoved>: chassisIndex is 0, slotIndex 0.2

%May 2 22:05:54:155 2000 IRF-58 STM/3/BOARD_REMOVED:
 Trap 1.3.6.1.4.1.25506.8.35.12.1.8<hh3cBoardRemoved>: chassisIndex is 0, member ID is 2, member ID is 1. Link status of the IRF port with port index 1 and member ID 1 turned to 2.

%May 2 22:05:54:629 2000 IRF-58 STM/3/STM_LINK_STATUS_DOWN:
 Trap 1.3.6.1.6.3.1.1.5.3<linkDown>: Interface 11796493 is Down, ifAdminStatus is 1, ifOperStatus is 2

%May 2 22:05:54:749 2000 IRF-58 DEVM/3/BOARD_REMOVED: Board is removed from Chassis 0 Slot 2, type is MAIN_BOARD_TYPE_28S.
%May 2 22:05:55:021 2000 IRF-58 IFNET/3/LINK_UPDOWN: Ten-GigabitEthernet1/0/14 link status is DOWN.

[IRF-58]dis mad verbose
Current MAD status: Detect
Excluded ports(configurable):
Excluded ports(can not be configured):
 Ten-GigabitEthernet1/0/13
 Ten-GigabitEthernet1/0/14
MAD ARP disabled.
MAD LACP disabled.
MAD BFD enabled interface:
 Vlan-interface66
 mad ip address 192.168.66.1 255.255.255.0 member 1
 mad ip address 192.168.66.2 255.255.255.0 member 2
6. Appendix A: Error Conditions and Notes
A number of error conditions and relevant observations have been documented in this Section for future reference.

6.1. Config not Saved
Don’t forget to save the config! Otherwise you may end up with an error similar to this:

```
[Number1]dis irf topology
```

<table>
<thead>
<tr>
<th>Topology Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRF-Port1</td>
</tr>
<tr>
<td>Switch Link neighbor</td>
</tr>
<tr>
<td>1 TIMEOUT --</td>
</tr>
</tbody>
</table>

6.2. IRF Ports

6.2.1. Physical 10Gb Interfaces
Interfaces that will become part of an IRF port group need to be shutdown before first to avoid errors similar to the following:

```
[Number1-irf-port1/1]port group interface Ten-GigabitEthernet 1/0/1 mode enhanced
ERROR: Please shutdown the current interface first.
```

6.2.2. 10Gb Transceivers
The Comware switches will work with any standard 10Gb SFP+ transceiver, including optics, DACs and DWDM/CWDM transceivers. However, an information message is generated as shown below (from an HP ProCurve DAC).

```
%Apr 26 12:39:01:714 2000 Number3 OPTMOD/5/IO_ERR:
Ten-GigabitEthernet2/0/28: The transceiver information I/O failed!

%Apr 26 12:39:01:864 2000 Number3 OPTMOD/4/MODULE_IN:
Ten-GigabitEthernet2/0/28: The transceiver is UNKNOWN.
```

6.2.3. IRF Port and Interface Numbers
It is only possible to connect IRF-port 1 to IRF-port 2. It is impossible to connect IRF-port 1 to IRF-port 1, or IRF-port 2 to IRF-port 2.

Only the IRF-port numbers are relevant, and the physical interface numbers are completely unimportant. So long as the IRF ports are configured correctly for 1→2, it makes no difference what the underlying interface numbers are.

For the A58xx switches (and most other Comware switches with IRF support), only 10Gb or faster ports can be used for IRF.
6.3. IRF Port Shutdown
IRF topology will determine if an IRF port can be shut down. In the example below, the 20Gb link between switch 1 and 3 was to be removed.

```
[IRF-58] int Ten-GigabitEthernet 3/0/25
[IRF-58-Ten-GigabitEthernet3/0/26] shutdown
```

Operation not supported on the last active physical port bound to IRF port which connected to the master! Please shutdown the other end of the link.

Performing the same action from the master switch was successful, and the link was shut down.

6.4. Reboot/Restart

6.4.1. Requirement
If a change is made to switch relating to it joining or leaving an IRF virtual switch, that switch should be restarted with the reboot command. Changes to IRF configuration (eg adding interfaces to an IRF port, adding an additional switch), do not require a restart.

6.4.2. Whole IRF Virtual Switch
Caution! Using the reboot command at the <user> prompt will cause the entire IRF virtual switch to restart!

6.4.3. switchto
Use the switchto command to get to a specific console.

```
[irf] irf switch-to 2
<irf-Slave#2>
```

Note that the Reboot command doesn’t work from the #n prompt. Removing and reinserting the power cable is generally required to restart an individual switch.
6.5. Removing Old Configurations

It is important to remove old IRF configuration components before trying to join switches into an IRF virtual switch. Failure to do so may make the IRF process difficult or impossible, or may lead to unexpected results.

A normal config reset will only clear the config items that are shown in the config files. That does not include the majority of the IRF configuration. To reset the additional IRF configuration, commands similar to the following need to be used, followed by a restart (as per Section 6.4).

6.5.1. Shutdown IRF port interfaces

```
[IRF-58]int Ten-GigabitEthernet 3/0/28
```

6.5.2. Remove the IRF Ports

```
[IRF-58]undo irf-port 3/1
[IRF-58]undo irf-port 3/2
[IRF-58]dis irf topology
```

```
Topology Info
```

```
<table>
<thead>
<tr>
<th>Switch</th>
<th>Link</th>
<th>neighbor</th>
<th>Link</th>
<th>neighbor</th>
<th>Belong To</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>DIS</td>
<td>--</td>
<td>DIS</td>
<td>--</td>
<td>3ce5-a610-7389</td>
</tr>
</tbody>
</table>
```

```
[IRF-58]irf member 3 renumber 1
```

Warning: Renumbering the switch number may result in configuration change or loss.

```
Continue?[Y/N]y
```

```
[IRF-58]dis irf configuration
```

```
MemberID NewID    IRF-Port1                     IRF-Port2
```

```
| 3       | 1    | disable                       disable |
```

```
[IRF-58]save
```

The current configuration will be written to the device. Are you sure? [Y/N]:y

Please input the file name(*.cfg)[flash:/config.cfg]

(To leave the existing filename unchanged, press the enter key):

```
flash:/config.cfg exists, overwrite? [Y/N]:y
```

Validating file. Please wait....

```
Saved the current configuration to mainboard device successfully.
```

```
Configuration is saved to device successfully.
```

The following command may also be useful to reset the IRF member ID:

```
[Number2]undo irf member 2 renumber
```
6.5.3. Reset Config

[IRF-58] quit
<IRF-58> reset saved-configuration
The saved configuration file will be erased. Are you sure? [Y/N]: y
Configuration file in flash is being cleared.
Please wait ...

MainBoard:
 Configuration file is cleared.
<IRF-58> reboot
 Start to check configuration with next startup configuration file, please wait..........DONE!
 This command will reboot the device. Current configuration will be lost, save current configuration? [Y/N]: n
 This command will reboot the device. Continue? [Y/N]: y

If you remove all the IRF-ports, and restart, the switch will show “c” on the front panel (for candidate).
6.6. Duplicate IRF Member IDs
This example shows what happens when a switch attempts to join the IRF virtual switch with an IRF member ID that exists already. This could occur if an additional switch was not restarted after issuing an IRF renumber command, or the member IDs were not verified.

6.6.1. Existing Config
Note the existing member ID 2 (IRF-58) and the new member ID 2 (Number3).

<table>
<thead>
<tr>
<th>MemberID</th>
<th>NewID</th>
<th>IRF-Port1</th>
<th>IRF-Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Ten-GigabitEthernet1/0/14</td>
<td>disable</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>disable</td>
<td>Ten-GigabitEthernet2/0/52</td>
</tr>
</tbody>
</table>

[Number3]dis irf configuration
MemberID NewID IRF-Port1 IRF-Port2
2 2 disable disable

6.6.2. Configuration
Some of the relevant config steps are shown to highlight how the error was generated. Switch Number3 still has an IRF member ID of 2 – this will clash with the existing IF member 2 in the IRF virtual switch.

[IRF-58]irf-port 2/1
[IRF-58-irf-port2/1]port group interface Ten-GigabitEthernet 2/0/49 mode enhanced

[Number3]irf-port 2/2
[Number3-irf-port2/2]port group interface Ten-GigabitEthernet 2/0/28 mode enhanced
6.6.3. Errors

Now connect the cable, Switch 2, port 49 to Switch 3, port 28.

No automatic renumbering occurs, and the additional switch (Number3) remains separate from the IRF virtual switch (IRF-58).

Other than the errors on Number3, no other errors or problems occur, and neither switch restarts or changes any other configuration.
7. Appendix B: Conigs

7.1. Default Switch Configuration – A5800-48G

```bash
# version 5.20, Release 1206
# sysname H3C
# irf mac-address persistent timer
# irf auto-update enable
# undo irf link-delay
# domain default enable system
# telnet server enable
# vlan 1
# radius scheme system
# server-type extended
primary authentication 127.0.0.1 1645
primary accounting 127.0.0.1 1646
# user-name-format without-domain
# domain system
# access-limit disable
# state active
# idle-cut disable
# self-service-url disable
# user-group system
# interface NULL0
# interface GigabitEthernet2/0/1
# port link-mode bridge
# interface GigabitEthernet2/0/2
# port link-mode bridge
# interface GigabitEthernet2/0/3
# port link-mode bridge
# interface GigabitEthernet2/0/4
# port link-mode bridge
# interface GigabitEthernet2/0/5
# port link-mode bridge
# interface GigabitEthernet2/0/6
# port link-mode bridge
# interface GigabitEthernet2/0/7
# port link-mode bridge
# interface GigabitEthernet2/0/8
```
port link-mode bridge
#
interface GigabitEthernet2/0/9
port link-mode bridge
#
interface GigabitEthernet2/0/10
port link-mode bridge
#
interface GigabitEthernet2/0/11
port link-mode bridge
#
interface GigabitEthernet2/0/12
port link-mode bridge
#
interface GigabitEthernet2/0/13
port link-mode bridge
#
interface GigabitEthernet2/0/14
port link-mode bridge
#
interface GigabitEthernet2/0/15
port link-mode bridge
#
interface GigabitEthernet2/0/16
port link-mode bridge
#
interface GigabitEthernet2/0/17
port link-mode bridge
#
interface GigabitEthernet2/0/18
port link-mode bridge
#
interface GigabitEthernet2/0/19
port link-mode bridge
#
interface GigabitEthernet2/0/20
port link-mode bridge
#
interface GigabitEthernet2/0/21
port link-mode bridge
#
interface GigabitEthernet2/0/22
port link-mode bridge
#
interface GigabitEthernet2/0/23
port link-mode bridge
#
interface GigabitEthernet2/0/24
port link-mode bridge
#
interface GigabitEthernet2/0/25
port link-mode bridge
#
interface GigabitEthernet2/0/26
port link-mode bridge
#
interface GigabitEthernet2/0/27
port link-mode bridge
#
interface GigabitEthernet2/0/28
 port link-mode bridge
#
interface GigabitEthernet2/0/29
 port link-mode bridge
#
interface GigabitEthernet2/0/30
 port link-mode bridge
#
interface GigabitEthernet2/0/31
 port link-mode bridge
#
interface GigabitEthernet2/0/32
 port link-mode bridge
#
interface GigabitEthernet2/0/33
 port link-mode bridge
#
interface GigabitEthernet2/0/34
 port link-mode bridge
#
interface GigabitEthernet2/0/35
 port link-mode bridge
#
interface GigabitEthernet2/0/36
 port link-mode bridge
#
interface GigabitEthernet2/0/37
 port link-mode bridge
#
interface GigabitEthernet2/0/38
 port link-mode bridge
#
interface GigabitEthernet2/0/39
 port link-mode bridge
#
interface GigabitEthernet2/0/40
 port link-mode bridge
#
interface GigabitEthernet2/0/41
 port link-mode bridge
#
interface GigabitEthernet2/0/42
 port link-mode bridge
#
interface GigabitEthernet2/0/43
 port link-mode bridge
#
interface GigabitEthernet2/0/44
 port link-mode bridge
#
interface GigabitEthernet2/0/45
 port link-mode bridge
#
interface GigabitEthernet2/0/46
 port link-mode bridge
#
interface GigabitEthernet2/0/48
port link-mode bridge
interface Ten-GigabitEthernet2/0/49
port link-mode bridge
interface Ten-GigabitEthernet2/0/50
port link-mode bridge
interface Ten-GigabitEthernet2/0/51
port link-mode bridge
interface Ten-GigabitEthernet2/0/52
port link-mode bridge
load xml-configuration
user-interface aux 1
user-interface vty 0 15
return
8. Appendix C: Sample Demo Script

The following is a very basic demo script that uses ping to multiple hosts when various aspects of IRF are demonstrated. So long as the devices are either dual connected to each IRF member switch, or are connected to another switch or device (eg blade chassis) that is dual connected, there should be minimum interruption (eg drops a single ping packet).

Copy the following text into a windows .CMD file – eg irftest.cmd. When run, it will launch multiple windows labelled with the text in quotes, each pinging the specified target host.

```cmd
rem Launch IRF Test Displays
rem RWL 29-Jun-11
@start "IRF Virtual Switch" ping 10.2.3.254 -t
@start "Device off A12500" ping 10.2.3.41 -t
@start "Wireless controller in E5406" ping 10.20.30.7 -t
@start "Blade Server Onboard Administrator 1" ping 10.2.3.14 -t
@start "Blade Server Onboard Administrator 2" ping 10.2.3.15 -t
@start "Third party switch" ping 10.2.10.29 -t
@start "Blade Server" ping 10.2.3.44 -t
```
9. Appendix D: IRF Config Steps for Most Devices

This is a reproduction of the relevant parts of Jeff Dziedzic's document that covers most Comware switches, along with some of the older firmware versions.

9.1. IRF on A12500, A9500 Switches

Step 1. Assign a unit number to each Chassis.
 - For unit 1:
 \texttt{irf member 1}
 - For unit 2:
 \texttt{irf member 2}

Step 2. Set the Chassis to operate in IRF mode. Reboot the switch when prompted
 \texttt{chassis convert mode irf}

Step 3. Set the switches to force the slave switch to check the boot file against the master.
 - For unit 1:
 \texttt{irf auto-update enable}
 - For unit 2:
 \texttt{irf auto-update enable}

Step 4. Save the configuration and reboot the switches
 \texttt{quit}
 \texttt{save}
 \texttt{startup saved-configuration xxx.cfg}
 \texttt{reboot}

Step 5. Assign IRF priority for each Chassis.
 - For unit 1:
 \texttt{irf member 1 priority 20}
 - For unit 2:
 \texttt{irf member 1 renumber 2}
 \texttt{reboot}
 - Wait for reboot
 \texttt{irf member 2 priority 10}

Step 6. Shutdown the 10 Gbps ports that will form the IRF
 - For Unit 1:
 \texttt{int TenGigabitEthernet 1/2/0/1}
 \texttt{shutdown}
 \texttt{quit}
 \texttt{int TenGigabitEthernet 1/2/0/2}
 \texttt{shutdown}
 \texttt{quit}
The IRF stack should now be formed. Verify IRF operation
display irf topology
display irf configuration
save
display irf
reboot

For Unit 2:
int Ten-GigabitEthernet 2/2/0/1
 shutdown
 quit
int Ten-GigabitEthernet 2/2/0/2
 shutdown
 quit

Step 7. Assign the 10 Gbps ports to an IRF port group

On Unit 1:
 irf-port 1/1
 port group interface ten-gigabitethernet 1/2/0/1 mode enhanced
 port group interface ten-gigabitethernet 1/2/0/2 mode enhanced
 quit

On Unit 2:
 irf-port 2/2
 port group interface ten-gigabitethernet 2/2/0/1 mode enhanced
 port group interface ten-gigabitethernet 2/2/0/2 mode enhanced
 quit

Step 8. Enable the 10 Gbps ports that will form the IRF

For Unit 1:
int Ten-GigabitEthernet 1/2/0/1
 undo shutdown
int Ten-GigabitEthernet 1/2/0/2
 undo shutdown

For Unit 2:
int Ten-GigabitEthernet 2/2/0/1
 undo shutdown
int Ten-GigabitEthernet 2/2/0/2
 undo shutdown

Step 9. Save the configuration

quitting
save

Step 10. Cable the IRF ports of the two switches. The secondary switch will now request to reboot.

Save the configuration
reboot

The IRF stack should now be formed. Verify IRF operation
display irf
display irf configuration
display irf topology
9.2. IRF on A7500 Switches

Step 1. Assign a unit number to each Chassis.

For unit 1:
irf member 1
For unit 2:
irf member 2

Step 2. Set the Chassis to operate in IRF mode. Reboot the switch when prompted
chassis convert mode irf

Step 3. Set the switches to disable the line cards if both management modules die and to force the slave switch to check the boot file against the master.

monitor handshake-timeout disable-port (only necessary on the A7500)
irf auto-update enable
monitor handshake-timeout disable-port (only necessary on the A7500)
irf auto-update enable

Step 4. Save the configuration and reboot the switches
quit
save xxx.cfg
reboot

Step 5. Assign IRF priority for each Chassis.

For unit 1:
irf member 1 priority 20
For unit 2:
irf member 1 renumber 2
reboot
Wait for reboot
irf member 2 priority 10

Step 6. Shutdown the 10 Gbps ports that will form the IRF

For Unit 1:
int TenGigabitEthernet 1/2/0/1
 shutdown
quit
int TenGigabitEthernet 1/2/0/2
 shutdown
quit

For Unit 2:
int TenGigabitEthernet 2/2/0/1
 shutdown
quit
int TenGigabitEthernet 2/2/0/2
 shutdown
quit

Step 7. Assign the 10 Gbps ports to an IRF port group

On Unit 1:
irf-port 1/1
 port group interface ten-gigabitethernet 1/2/0/1 mode enhanced
 port group interface ten-gigabitethernet 1/2/0/2 mode enhanced
quit

On Unit 2:
irf-port 2/2
 port group interface ten-gigabitethernet 2/2/0/1 mode enhanced
 port group interface ten-gigabitethernet 2/2/0/2 mode enhanced
quit

Step 8. Enable the 10 Gbps ports that will form the IRF

For Unit 1:
int Ten-GigabitEthernet 1/2/0/1
 undo shutdown
int Ten-GigabitEthernet 1/2/0/2
 undo shutdown

For Unit 2:
int Ten-GigabitEthernet 2/2/0/1
 undo shutdown
int Ten-GigabitEthernet 2/2/0/2
 undo shutdown

Step 9. Save the configuration
quit
save

Step 10. Cable the IRF ports of the two switches. The secondary switch will now request to reboot.

Save the configuration
reboot
The IRF stack should now be formed. Verify IRF operation
display irf
display irf configuration
display irf topology
9.3. IRF on A5820, A5800 Switches (and new A5500Ei)

Step 1. Assign a unit number to each Chassis.
For unit 1:
 irf member 1
For unit 2:
 irf member 1 renumber 2
For unit 3:
 irf member 1 renumber 3
For unit 4:
 irf member 1 renumber 4

Step 2. Assign IRF priority for each Chassis.
For unit 1:
 irf member 1 priority 25
 irf member 2 priority 20
 irf member 3 priority 15
 irf member 4 priority 10
 reboot
Wait for reboot

Step 3. Save the configuration and reboot the switches
 quit
 save
 reboot

Step 4. Shutdown the 10 Gbps ports that will form the IRF
For Unit 1:
 int TenGigabitEthernet 1/1/1
 shutdown
 quit
 int TenGigabitEthernet 1/1/2
 shutdown
 quit
For Unit 2:
 int TenGigabitEthernet 2/1/1
 shutdown
 quit
 int TenGigabitEthernet 2/1/2
 shutdown
 quit
For Unit 3:
 int TenGigabitEthernet 3/1/1
 shutdown
 quit
 int TenGigabitEthernet 3/1/2
 shutdown
 quit
For Unit 4:
int Ten-GigabitEthernet 4/1/1
 shutdown
 quit
int Ten-GigabitEthernet 4/1/2
 shutdown
 quit

Step 5. Assign the 10 Gbps ports to an IRF port group

On Unit 1:
 irf-port 1/1
 port group interface ten-gigabitethetnet 1/1/1 mode enhanced
 irf-port 1/2
 port group interface ten-gigabitethetnet 1/1/2 mode enhanced
 quit

On Unit 2:
 irf-port 2/1
 port group interface ten-gigabitethetnet 2/1/1 mode enhanced
 irf-port 2/2
 port group interface ten-gigabitethetnet 2/1/2 mode enhanced
 quit

On Unit 3:
 irf-port 3/1
 port group interface ten-gigabitethetnet 3/0/51 mode enhanced
 irf-port 3/2
 port group interface ten-gigabitethetnet 3/0/52 mode enhanced
 quit

On Unit 4:
 irf-port 4/1
 port group interface ten-gigabitethetnet 4/0/51 mode enhanced
 irf-port 4/2
 port group interface ten-gigabitethetnet 4/0/52 mode enhanced
 quit

Step 6. Enable the 10 Gbps ports that will form the IRF

For Unit 1:
int Ten-GigabitEthernet 1/1/1
 undo shutdown
int Ten-GigabitEthernet 1/1/2
 undo shutdown

For Unit 2:
int Ten-GigabitEthernet 2/0/1
 undo shutdown
int Ten-GigabitEthernet 2/0/2
 undo shutdown

For Unit 3:
int Ten-GigabitEthernet 3/0/1
undo shutdown
int Ten-GigabitEthernet 3/0/2
undo shutdown

For Unit 4:
int Ten-GigabitEthernet 4/0/1
undo shutdown
int Ten-GigabitEthernet 4/0/2
undo shutdown

Step 8. Activate the IRF Port Configuration

```
irf-port-configuration active
```

Step 9. Save the configuration

```
quit
save
```

Step 10. Cable the IRF ports of the two switches. The secondary switch will now request to reboot.

```
Save the configuration
reboot
The IRF stack should now be formed. Verify IRF operation
display irf
display irf configuration
display irf topology
```
9.4. IRF on A5500Ei, A5120Ei Switches – Old Method

Start with the switches not cabled together.

Step 1. Assign a unit number to each Chassis.
For unit 1:
- `irf member 1`
For unit 2:
- `irf member 1 renumber 2`
For unit 3:
- `irf member 1 renumber 3`
For unit 4:
- `irf member 1 renumber 4`

Step 2. Assign IRF priority for each Chassis.
For unit 1:
- `irf member 1 priority 25`
- `irf member 2 priority 20`
- `irf member 3 priority 15`
- `irf member 4 priority 10`

Step 3. Save the configuration and reboot the switches
```
quit
save
reboot
```

Step 4. Assign the 10 Gbps ports to an IRF port group
```
irf member member-id irf-port irf-port-id port port-list
```
For unit 1:
- `irf member 1 irf-port 1 port 1`
For unit 2:
- `irf member 1 irf-port 2 port 2`
For unit 3:
- `irf member 1 irf-port 3 port 3`
For unit 4:
- `irf member 1 irf-port 4 port 4`
This step that is different from other IRF configurations. The physical 10GbE ports used to make the IRF ports can be either the SFP+ or CX4 ports on the back. Looking at the back of the switch, the ports are numbered for IRF purposes as 1 and 2 for the module on the left and 3 and 4 for the module on the right.

The 5500 supports up to two 10GbE ports per IRF port (remember in the recommended ring IRF topology there will be 2 IRF ports). There are two rules for assigning the 10GbE ports to each IRF port:

1) The 10GbE ports that make up an IRF port must reside on the same module (1 & 2 or 3 & 4), but different IRF ports can, but are not required to, reside in different modules.

2) IRF port 1 must be physically to the left of IRF port 2.

This means there are 4 possible valid IRF port configurations:

1) Using only the left module – 10GbE port 1 will be IRF port 1 and 10GbE port 2 will be IRF port 2.
2) Using only the right module – 10GbE port 3 will be IRF port 1 and 10GbE port 4 will be IRF port 2.
3) Using both modules with only one 10GbE port per IRF port – 10GbE port 1 or 2 will be IRF port 1 and 10GbE port 3 or 4 will be IRF port 2.
4) Using two 10GbE ports per IRF port (This is only possible if there are only 2 switches in the IRF stack) – 10GbE ports 1 & 2 will be IRF port 1 and 10GbE ports 3 & 4 will be IRF port 2.

The most common and most simple configurations are option 1 or 2.

Step 5. Cable the switches