HPE Blog, Austria, Germany & Switzerland
abbrechen
Suchergebnisse werden angezeigt für 
Stattdessen suchen nach 
Meintest du: 

HPE GPU-as-a-Service für den schnelleren Einsatz von KI bei geringeren Gesamtkosten

GettyImages-884106024_1600_0_72_RGB (1)-.jpgEin Ausweichen auf die Cloud scheint Data Scientists mitunter der einzig gangbare Weg, um genügend Rechenleistung für ihr Modelltraining zu erhalten. Der Hintergrund: Das rasante Wachstum des Datenvolumens hat in den letzten Jahren die Leistungssteigerung der CPUs überholt. Lediglich eine Prozessorvariante – Grafikbeschleuniger (Graphical Processing Units, kurz GPUs) – bieten die erforderliche Performance, um das Trainieren von ML-Modellen ausreichend flott durchzuführen. Deshalb zieht man heute bevorzugt GPU-basierte Server für ML-Projekte heran. Diese sind allerdings teure Spezialhardware, um die dann die Mitarbeiter diverser ML-Projekte im Unternehmen konkurrieren. Public-Cloud-Provider bieten die Option, Grafikprozessoren nach Bedarf zu beziehen (HPE GPU-as-a-Service, HPE GPUaaS). Jedoch gilt auch hier: Die Cloud ist nicht für jedes Unternehmen das Mittel der Wahl.

Eine Alternative eröffnet sich mit HPE GPU-as-a-Service. Eine solche Plattform ist für den On-premises-Einsatz im Unternehmen konzipiert und stellen GPU-basierte Serverkapazitäten als einheitlichen Ressourcenpool bereit. Das IT-Team kann diesen Pool zentral verwalten, während die Datenwissenschaftler Ressourcen per Self-Service buchen können – das erleichtert allen Beteiligten die Arbeit. Mittels vorab integrierter Container-Images für GPU-basierte ML-Applikationen und -Tools können Datenwissenschaftler in wenigen Minuten ML-Umgebungen einrichten. Dank Mandantentrennung und Datenisolation lassen sich mehrere Projekte gleichzeitig auf geteilten GPU-Ressourcen betreiben – auch im schnellen Wechsel, denn der Status der Applikationen bleibt beim Pausieren erhalten.

GPUs stehen damit lokal als Shared Pool auf Abruf bereit – wie in den Clouds der Hyperscaler. Das vermeidet Kosten für dedizierte, aber nur zeitweise genutzte Spezialhardware und verkürzt für die ML-Fachleute die Vorlaufzeit, bis sie ihrer Arbeit nachgehen können. Zugleich vermeidet der On-premises-Ansatz die Performance-, Security- und Compliance-Fallen, die bei der Public-Cloud-Nutzung lauern. Stattdessen bietet er einen hochverfügbaren Betrieb der GPU-Server und -Cluster, die Integration in Security-Lösungen einschließlich rollenbasierter Zugriffskontrolle, eine nachverfolgbare Datennutzung und eine durchgängige Steuerung der ML-Umgebungen.

Der Best-Practice-Ansatz ist damit eine Lösung für das automatisierte Lifecycle-Management von Machine-Learning-Projekten auf der Basis der On-premises-Plattform für GPUaaS. Denn durch diese Kombination entfallen zahlreiche Hindernisse, die eine erfolgreiche KI-Einführung blockierten: niedrige Umsetzungsgeschwindigkeit, erheblicher Aufwand für Einrichtung und Betrieb, hohe Kosten sowie mangelnde Transparenz. Das Unternehmen kann damit KI-basierte Geschäftserkenntnisse früher nutzen. Das IT-Operations-Team kann Entwicklungs-, Test- und Produktionsumgebungen in Minuten statt Tagen bereitstellen und über die gesamte Einsatzdauer hinweg als Shared Pool zentral verwalten. Datenwissenschaftler wiederum können vom ersten Tag an ihre bevorzugten Tools und Sprachen nutzen und ihre Zeit mit Modellerstellung und Analysen verbringen – statt damit, ihre Trainingsumgebungen einzurichten. Das erleichtert nicht zuletzt auch die Suche nach Fachkräften in diesem heiß umkämpften Markt.

Weitere Informationen über HPEs Container Platform Lösung finden Sie hier: https://www.hpe.com/de/de/solutions/container-platform.html

Featured Blog Post: Automatisierter Betrieb von ML-Umgebungen: Mehr Schwung für KI-Projekte


Capture.PNGDima Tsaripa ist Category Manager HPC, Big Data & Artificial Intelligence bei Hewlett Packard Enterprise.

Dima Tsaripa
Hewlett Packard Enterprise

twitter.com/HPE_DE
linkedin.com/in/dima-tsaripa-31b1b319/
hpe.com/de

0 Kudos
Über den Autor

Dima_Tsaripa

Dima Tsaripa ist Category Manager HPC, Big Data & Artificial Intelligence bei Hewlett Packard Enterprise.

Veranstaltungen
Starting June 23
HPE Discover Virtual Experience
Joins us for HPE Discover Virtual Experience live and on-demand
Mehr lesen
Online Expert Days - 2020
Visit this forum and get the schedules for online Expert Days where you can talk to HPE product experts, R&D and support team members and get answers...
Mehr lesen
Alle anzeigen